1
|
Feng T, Xie Y, Xie W, Chen Y, Wang P, Li L, Han J, Ta D, Cheng L, Cheng Q. Characterization of multi-biomarkers for bone health assessment based on photoacoustic physicochemical analysis method. PHOTOACOUSTICS 2022; 25:100320. [PMID: 35004172 PMCID: PMC8717597 DOI: 10.1016/j.pacs.2021.100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/20/2021] [Accepted: 12/05/2021] [Indexed: 05/12/2023]
Abstract
Photoacoustic (PA) techniques are potential alternatives to histopathology. The physicochemical spectrogram (PCS) generated by the PA measurement at multiple wavelengths can presents the morphology and chemical composition target at multi-biomarkers simultaneously. In this work, via multi-wavelength PA measurements performed on rabbit bone models, we investigated the feasibility of using PCSs for bone health assessment. A comprehensive analysis of the PCSs, termed PA physicochemical analysis (PAPCA), was conducted. The "slope" and "relative content" were used as the PAPCA-quantified parameters to characterize the changes in the physical and chemical properties of bone tissue, respectively. The findings are consistent well with the gold-standard imaging results. It demonstrated that the PAPCA can be used to characterize both the microstructure and content of multi-biomarkers which highly related with bone health. Considering the PA technique is noninvasive and radiation-free, it has great potential in the implementation and monitoring of bone diseases progression.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Jing Han
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
2
|
Peralta L, Maeztu Redin JD, Fan F, Cai X, Laugier P, Schneider J, Raum K, Grimal Q. Bulk Wave Velocities in Cortical Bone Reflect Porosity and Compression Strength. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:799-808. [PMID: 33341302 DOI: 10.1016/j.ultrasmedbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The goal of this study was to evaluate whether ultrasonic velocities in cortical bone can be considered as a proxy for mechanical quality of cortical bone tissue reflected by porosity and compression strength. Micro-computed tomography, compression mechanical testing and resonant ultrasound spectroscopy were used to assess, respectively, porosity, strength and velocity of bulk waves of both shear and longitudinal polarisations propagating along and perpendicular to osteons, in 92 cortical bone specimens from tibia and femur of elderly human donors. All velocities were significantly associated with strength (r = 0.65-0.83) and porosity (r = -0.64 to -0.77). Roughly, according to linear regression models, a decrease in velocity of 100 m/s corresponded to a loss of 20 MPa in strength (which is approximately 10% of the largest strength value) and to an increase in porosity of 5%. These results provide a rationale for the in vivo measurement of one or several velocities for the diagnosis of bone fragility.
Collapse
Affiliation(s)
- Laura Peralta
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom.
| | - Juan Deyo Maeztu Redin
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Fan Fan
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France; Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiran Cai
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Pascal Laugier
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| | - Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charit-Universittsmedizin Berlin, Berlin, Germany
| | - Quentin Grimal
- Sorbonne Universite, INSERM, CNRS, Laboratoire d'lmagerie Biomedicale, LIB, F-75006 Paris, France
| |
Collapse
|
3
|
Caplliure-Llopis J, Escrivá D, Benlloch M, de la Rubia Ortí JE, Estrela JM, Barrios C. Poor Bone Quality in Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2021; 11:599216. [PMID: 33391162 PMCID: PMC7775537 DOI: 10.3389/fneur.2020.599216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
Objective: Musculoskeletal functional deterioration in Amyotrophic lateral sclerosis (ALS) is associated with an increase in bone fractures. The purpose of this study was to evaluate the influence of sex, ALS type, on bone quality in patients with ALS compared to healthy controls. The impact on bone health of the clinical status and some metabolic parameters was also analyzed in ALS patients. Methods: A series of 33 voluntary patients with ALS, and 66 healthy individuals matched in sex and age underwent assessment of bone mass quality using quantitative ultrasound (QUS) of the calcaneus. Ultrasonic broadband attenuation (BUA), the speed of sound (SOS), stiffness index and T-score were measured. Bone mineral density (BMD) was estimated using standard equations. Apart from fat and muscle mass percentage determinations, clinical baseline measures in ALS patients included ALSFRS-R score, Barthel index for activities of daily living, pulmonary function measured using FVC, and muscular strength assessed by a modified MRC grading scale. Laboratory tests included serum calcium, 25-HO-cholecalciferol (Vitamin D), alkaline phosphatase (ALP), T4 and TSH. Results: All bone parameters evaluated were statistically significant lower in ALS patients than in healthy controls. ALS females showed significantly lower bone parameters than healthy females. According to the estimated BMD, there were 25 ALS patients (75.8%) and 36 (54.5%) healthy individuals showing an osteoporotic profile (BMD <0.700 g/cm2). Only 16.7% of the ALS females had T-scores indicative of healthy bones. There was no correlation between any of the clinical parameters analyzed and the bone QUS measurements. Vitamin D and TSH levels positively correlated with all the bone parameters. Conclusions: This study confirms that ALS patients, particularly females, exhibited deteriorated bone health as compared to healthy individuals. These structural bone changes were independent of ALS subtype and clinical status. Bone health in ALS patients seems to be related to certain metabolic parameters such as Vitamin D and TSH levels.
Collapse
Affiliation(s)
- Jordi Caplliure-Llopis
- School of Doctorate, Valencia Catholic University, Valencia, Spain.,Primary Care Services, La Ribera University Hospital, Alzira, Spain
| | - Dolores Escrivá
- Intensive Care Unit, La Fe Polytechnic and University Hospital, Valencia, Spain
| | - María Benlloch
- Department of Anatomy and Physiology, School of Medicine and Health Sciences, Valencia Catholic University, Valencia, Spain
| | - José Enrique de la Rubia Ortí
- Department of Anatomy and Physiology, School of Medicine and Health Sciences, Valencia Catholic University, Valencia, Spain
| | | | - Carlos Barrios
- Institute of Research on Musculoskeletal Disorders, Valencia Catholic University, Valencia, Spain
| |
Collapse
|
4
|
Grimal Q, Laugier P. Quantitative Ultrasound Assessment of Cortical Bone Properties Beyond Bone Mineral Density. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Lizondo V, Caplliure-Llopis J, Escrivá D, De La Rubia JE, Barrios C. Bone quality in young adults with intellectual disability involved in adapted competitive football. Eur J Sport Sci 2019; 19:850-859. [PMID: 30624162 DOI: 10.1080/17461391.2018.1563633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to analyse bone quality parameters of football players with intellectual disability (ID) participating in adapted competitive football. Sixty-seven male football players with ID were studied: 22 with Down syndrome (DS) and 45 without DS. The average age was 26 years (range: 16 ̶ 50 years). A group of 25 age-matched sedentary individuals with ID (11 DS and 14 non-DS) and another group of 20 healthy participants of the same age group not involved in competitive football were comparatively analysed. There were no differences in the bone quality parameters when the healthy sedentary individuals were compared with both the sedentary and the football players with ID. However, the speed of sound (SOS), T-score, and estimated bone mineral density (BMD) were of higher values in the football players with ID than in the sedentary ID group (p < 0.05). On comparing the football players with non-DS ID with the sedentary non-DS individuals, significant differences were noted in SOS (p < 0.01), T-scores (p < 0.01), and estimated BMD (p < 0.01). Four of the 45 non-DS (8.9%) and none of the football players with DS had T-scores less than -1.5. Two of the 14 sedentary non-DS participants (14.3%) had T-scores indicating osteoporosis. In summary, the ID population actively involved in football showed higher values of bone mass parameters than their sedentary ID and healthy peers. The participants with non-DS ID showed a higher prevalence of osteoporosis than the football players with DS. Participation in sports seems to prevent bone loss in individuals with ID.
Collapse
Affiliation(s)
- Vicente Lizondo
- a School of Doctorate , Valencia Catholic University , Valencia , Spain
| | | | - Dolores Escrivá
- b Nursing School , Valencia Catholic University , Valencia , Spain
| | | | - Carlos Barrios
- c Institute for Research on Musculoskeletal Disorders , Valencia Catholic University , Valencia , Spain
| |
Collapse
|
6
|
Okada S, Kawano A, Oue H, Takeda Y, Yokoi M, Koretake K, Tsuga K. Preoperative evaluation of bone quality for dental implantation using an ultrasound axial transmission device in an ex vivo model. Clin Exp Dent Res 2018; 3:81-86. [PMID: 29744183 PMCID: PMC5719822 DOI: 10.1002/cre2.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 11/10/2022] Open
Abstract
This study investigated the clinical utility of an ultrasound axial transmission device in preoperative evaluation of bone quality for dental implantation, by clarifying the relationship between cortical bone speed of sound (cSOS), insertion torque values (ITV), and implant stability quotient (ISQ) in porcine femur bone. Eleven fresh porcine femurs, without soft tissue, were prepared. The cSOS of these bones were measured using the axial transmission device. Bone mineral density (BMD) and porosity (Po) were measured in cortical bone samples obtained from the region of ultrasound measurements by X-ray microcomputed tomography. Thirty-three implants were inserted into these samples (three implants per bone sample), and ITV and ISQ were measured for all implants. Then, cortical bone thickness (CbTh) of the area for implantation was measured for all implants using a micrometer. The mean cSOS was 3962 m/s; mean BMD and Po were 0.822 g/cm2 and 0.185%, respectively. cSOS and BMD values were positively correlated, and cSOS values and Po values were negatively correlated. Mean ITV, ISQ, and CbTh were 37.95 Ncm, 71.172, and 2.869 mm, respectively. There was a positive correlation between cSOS values and ISQ values. The cSOS of each bone did not correlate with ITV for all of the bone samples. However, when the CbTh ranges from 3.0 to 3.5 mm, ITV are correlated with cSOS. These findings suggest that cSOS, which reflects the cortical bone quality, may be clinical utility as a preoperative diagnosis of the implant.
Collapse
Affiliation(s)
- Shinsuke Okada
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Akira Kawano
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Yosuke Takeda
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Miyuki Yokoi
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Katsunori Koretake
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
7
|
Gräsel M, Glüer CC, Barkmann R. Characterization of a new ultrasound device designed for measuring cortical porosity at the human tibia: A phantom study. ULTRASONICS 2017; 76:183-191. [PMID: 28107676 DOI: 10.1016/j.ultras.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Quantitative ultrasound (QUS) measurements of trabecular bone are a useful tool for the assessment of osteoporotic fracture risk. However, cortical bone properties (e.g. porosity) have an impact on bone strength as well and thus current research is focused on QUS assessment of cortical bone properties. Simulation studies of ultrasound propagation through cortical bone indicate that anisotropy, calculated from the ratio of the velocities in axial and tangential directions, is correlated with porosity. However, this relationship is affected by error sources, specifically bone surface curvature and variability of probe positioning. With the aim of in vivo estimation of cortical porosity a new ultrasound device was developed, which sequentially measures velocities in 3 different directions (axial=0° and ±37.5°) using the axial transmission method. Measurements on planar porosity phantoms (0-25%) were performed to confirm the results of the afore mentioned simulation studies. Additionally, measurements on cylindrical phantoms without pores (min. radius=34mm for strongest curvature) were performed to estimate the influence of surface curvature on velocity measurements (the tibia bone surface is fairly flat but may show surface curvature in some patients). The velocities in the axial and ±37.5° directions were used to calculate an anisotropy index. The velocities measured on the porosity phantoms showed a decrease by -6.3±0.2m/s and -10.1±0.2m/s per percent increase in porosity in axial and ±37.5° directions, respectively. Surface curvature had an effect on the velocities measured in ±37.5° directions which could be minimized by a correction algorithm resulting in an error of 5m/s. The anisotropy index could be used to estimate porosity with an accuracy error of 1.5%. These results indicate that an estimation of porosity using velocity measurements in different directions might be feasible, even in bones with curved surface. These results obtained on phantom material indicate that the approach tested may be suited for porosity measurements on human tibia bone.
Collapse
Affiliation(s)
- M Gräsel
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Am Botanischen Garten 14, 24118 Kiel, Germany.
| | - C-C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Am Botanischen Garten 14, 24118 Kiel, Germany.
| | - R Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Am Botanischen Garten 14, 24118 Kiel, Germany.
| |
Collapse
|
8
|
Eneh CTM, Malo MKH, Karjalainen JP, Liukkonen J, Töyräs J, Jurvelin JS. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone. Med Phys 2017; 43:2030. [PMID: 27147315 DOI: 10.1118/1.4942808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. METHODS The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. RESULTS Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R(2) ≥ 0.493, p < 0.01 and R(2) ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%-16.4%) was about 6% in the cortical thickness assessment in vitro. CONCLUSIONS Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo, the relationship between radial SOS and cortical porosity can be utilized and a porosity based radial SOS estimate could be implemented to determine cortical thickness. This would constitute a step toward individualized quantitative ultrasound diagnostics of osteoporosis.
Collapse
Affiliation(s)
- C T M Eneh
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland
| | - M K H Malo
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - J P Karjalainen
- Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211, Finland
| | - J Liukkonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland
| | - J S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland
| |
Collapse
|
9
|
Eneh CTM, Liukkonen J, Malo MKH, Jurvelin JS, Töyräs J. Inter-individual changes in cortical bone three-dimensional microstructure and elastic coefficient have opposite effects on radial sound speed. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3491-3499. [PMID: 26723306 DOI: 10.1121/1.4934276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Knowledge about simultaneous contributions of tissue microstructure and elastic properties on ultrasound speed in cortical bone is limited. In a previous study, porosities and elastic coefficients of cortical bone in human femurs were shown to change with age. In the present study, influences of inter-individual and site-dependent variation in cortical bone microstructure and elastic properties on radial speed of sound (SOS; at 4, 6, and 8 MHz) were investigated using three-dimensional (3D) finite difference time domain modeling. Models with fixed (nominal model) and sample-specific (sample-specific model) values of radial elastic coefficients were compared. Elastic coefficients and microstructure for samples (n = 24) of human femoral shafts (n = 6) were derived using scanning acoustic microscopy and micro-computed tomography images, respectively. Porosity-related SOS varied more extensively in nominal models than in sample-specific models. Linear correlation between pore separation and SOS was similar (R = 0.8, p < 0.01, for 4 MHz) for both models. The determination coefficient (R(2)= 0.75, p < 0.05) between porosity and radial SOS, especially at 4 MHz, was highest in the posterior quadrant. The determination coefficient was lower for models with sample-specific values of radial elastic coefficient implemented (R(2) < 0.33, p < 0.05), than for nominal models (0.48 < R(2)< 0.63, p < 0.05). This information could be useful in in vivo pulse-echo cortical thickness measurements applying constant SOS.
Collapse
Affiliation(s)
- Chibuzor T M Eneh
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jukka Liukkonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
10
|
Estimation of in vivo cortical bone thickness using ultrasonic waves. J Med Ultrason (2001) 2015; 42:315-22. [DOI: 10.1007/s10396-015-0617-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
|
11
|
Ferry B, Gavris M, Tifrea C, Serbanoiu S, Pop AC, Bembea M, Courteix D. The bone tissue of children and adolescents with Down syndrome is sensitive to mechanical stress in certain skeletal locations: a 1-year physical training program study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2077-2084. [PMID: 24878629 DOI: 10.1016/j.ridd.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
The systemic complications of Down syndrome (DS) attenuate the osteogenic response to physical activity in DS patients. Through an interventional study we showed the effects of physical training on development of bone mineral content (BMC) and density (BMD) as well as on quantitative bone ultrasound (QUS) parameters in individuals with DS. A total of 42 children with DS were randomly assigned to either an exercising (DS-E, n=20, age 16 ± 1.8 years) or non-exercising group (DS-NE, n=22, age 16.9 ± 1.5 years). DS-E group was assigned to a program of osteogenic activities with 60 min sessions twice a week, over 12 month period. Bone mass measures were performed by dual X-ray absorpsiometry (DXA) at the spine and hip, and ultrasound attenuation (BUA) and velocity (SOS) assessed from the calcaneus by QUS device. All bone parameters had evolved with age, except for neck BMD. One year of training increased BMC values at lumbar spine (7%, p<.005) and total hip (10%, p<.05), and BMD values only at lumbar spine (4%, p<.05). Changes in BUA and SOS values were not evident following training. Trained individuals increased their motor skills measured through Eurofit tests. It was concluded that a program of osteogenic physical training may induce bone improvement in children with DS, but with a lower magnitude than that reported in the specialized literature for individuals without DS.
Collapse
Affiliation(s)
- Béatrice Ferry
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques, Clermont-Ferrand, France; Université Limoges, Faculté des Sciences et Techniques, STAPS, Limoges, France.
| | - Mirela Gavris
- UNEFS Bucarest, Centre de Recherche Interdisciplinaire "Dr. Alexandru Partheniu", Romania
| | - Corina Tifrea
- UNEFS Bucarest, Centre de Recherche Interdisciplinaire "Dr. Alexandru Partheniu", Romania
| | - Sorin Serbanoiu
- UNEFS Bucarest, Centre de Recherche Interdisciplinaire "Dr. Alexandru Partheniu", Romania
| | - Anca-Cristina Pop
- University of Oradea, Research Centre on Human Performance, Oradea, Romania
| | - Marius Bembea
- Pediatric Hospital Oradea, Laborator de Genetica, Genetic Department, Oradea, Romania
| | - Daniel Courteix
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques, Clermont-Ferrand, France
| |
Collapse
|
12
|
Zhang Z, Liu D, Deng M, Ta D, Wang W. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1660-1670. [PMID: 24726796 DOI: 10.1016/j.ultrasmedbio.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.
Collapse
Affiliation(s)
- Zhenggang Zhang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Dan Liu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Mingxi Deng
- Department of Physics, Logistics Engineering University, Chongqing, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China.
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Grimal Q, Rohrbach D, Grondin J, Barkmann R, Glüer CC, Raum K, Laugier P. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1015-1026. [PMID: 24486239 DOI: 10.1016/j.ultrasmedbio.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method.
Collapse
Affiliation(s)
- Quentin Grimal
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France.
| | - Daniel Rohrbach
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julien Grondin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Claus-C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - Kay Raum
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7623, LIP, F-75006, Paris, France; CNRS, UMR 7623, LIP, F-75006, Paris, France
| |
Collapse
|
14
|
Gavris M, Courteix D, Serbanoiu S, Hantiu I, Tifrea C, Ferry B. Bone Tissue in Down Syndrome Patients Deteriorates Following Aging: A Study Based on Bone Ultrasound Analysis. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2013.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Rohde K, Rohrbach D, Glüer CC, Laugier P, Grimal Q, Raum K, Barkmann R. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:302-313. [PMID: 24474136 DOI: 10.1109/tuffc.2014.6722615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness.
Collapse
|
16
|
Daugschies M, Rohde K, Glüer CC, Barkmann R. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone. ULTRASONICS 2014; 54:4-10. [PMID: 23896622 DOI: 10.1016/j.ultras.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
Our objective is to evaluate an ultrasound probe for measurements of velocity and anisotropy in human cortical bone (tibia). The anisotropy of cortical bone is a known and mechanically relevant property in the context of osteoporotic fracture risk. Current in vivo quantitative ultrasound devices measuring the velocity of ultrasound in long bones can only be applied in the axial direction. For anisotropy measurements a second direction for velocity measurements preferably perpendicular to the axial direction is necessary. We developed a new ultrasound probe which permits axial transmission measurements with a simultaneous second perpendicular direction (tangential). Anisotropy measurements were performed on isotropic and anisotropic phantoms and two excised human female tibiae (age 63 and 82). Anisotropy ratios (AI; ratio of squared ultrasound velocities in the two directions) were for the isotropic phantom 1.06 ± 0.01 and for the anisotropic phantom 1.14 ± 0.03 (mean ± standard deviation). AI was 1.83 ± 0.29 in the tibia from the older donor and 1.37 ± 0.18 in the tibia from the younger donor. The AIs were in the expected range and differed significantly (p<0.05, t-test) between the tibiae. Measured sound velocities were reproducible (mean standard deviation of short time precision of both channels for phantom measurements 31 m/s) and in agreement with reported velocities of the phantom material. Our results document the feasibility of anisotropy measurements at long bones using a single probe. Further improvements in the design of the probe and tests in vivo are warranted. If this approach can be evaluated in vivo an additional tool for assessing the bone status is available for clinical use.
Collapse
Affiliation(s)
- M Daugschies
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Am Botanischen Garten 14, 24118 Kiel, Germany.
| | | | | | | |
Collapse
|
17
|
Mathieu V, Chappard C, Vayron R, Michel A, Haïat G. Radial anatomic variation of ultrasonic velocity in human cortical bone. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2185-2193. [PMID: 23969161 DOI: 10.1016/j.ultrasmedbio.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Quantitative ultrasound techniques can be used to retrieve cortical bone quality. The aim of this study was to investigate the anatomic variations in speed of sound (SOS) in the radial direction of cortical bone tissue. SOS measurements were realized in 17 human cortical bone samples with a 3.5-MHz transverse transmission device. The radial dependence of SOS was investigated in a direction perpendicular to the periosteum. For each sample, bone porosity was measured using an X-ray micro-computed tomography device. The mean SOS was 3586 ± 255 m/s. For 16 of 17 specimens, similar radial variations in SOS were observed. In the periosteal region, SOS first decreased in the direction of the endosteum and reached a minimum value approximately in the middle of the cortical bone. SOS then increased, moving to the endosteal region. A significant negative correlation was obtained between SOS and porosity (R = -0.54, p = 0.02).
Collapse
Affiliation(s)
- Vincent Mathieu
- CNRS, Laboratoire Modélisation et Simulation Multi-Échelle, UMR CNRS 8208, Créteil, France
| | | | | | | | | |
Collapse
|
18
|
Foiret J, Grimal Q, Talmant M, Longo R, Laugier P. Probing heterogeneity of cortical bone with ultrasound axial transmission. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:187-193. [PMID: 23405434 DOI: 10.1109/tuffc.2013.2549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In clinical examination of long cortical bones based on ultrasound axial transmission, the parameter currently used as indicator of bone fragility is the velocity of the first arriving signal (VFAS). VFAS is inherently related to the material properties of the bone site. However, experimental uncertainties may hide the true sensitivity of VFAS to elastic characteristics of bone. Measurements are performed with a multi-element compact array placed in contact with the bone. Therefore, VFAS measurements may be biased by variability imposed by geometrical irregularities of the sample below the probe and/or by probe misalignment. In this paper, we test the assumption that despite experimental errors, VFAS variations resulting from material properties can be measured. The methodology was to compare VFAS and velocities of compression bulk waves (VBWs) on carefully matched sites around the circumference of a test sample (bovine femur). VBW was mapped on bone cross-sections using a through-transmission technique. VBW and VFAS were highly correlated [R² = 0.80, root mean square error = 23 m·s⁻¹, p < 10⁻⁵] and the slope of the linear regression was close to 1 except in a part of the circumference with a pronounced curvature. In measurements performed with the same protocol as for clinical measurements, regions with different material properties (reflected by VBW) could be identified. This work demonstrates that within-specimen variations of material properties can be assessed with a technique available for in vivo measurements.
Collapse
Affiliation(s)
- Josquin Foiret
- Laboratoire d’Imagerie Parametrique, UMR 7623, Universite Pierre et Marie Curie-Paris VI, Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Computed tomography, histological and ultrasonic measurements of adolescent scoliotic rib hump geometrical and material properties. J Biomech 2012; 45:2467-71. [DOI: 10.1016/j.jbiomech.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 11/21/2022]
|