1
|
Sotiriou M, Damianou C. Evaluating acoustic and thermal properties of a plaque phantom. J Ultrasound 2024; 27:457-470. [PMID: 37031317 PMCID: PMC11333666 DOI: 10.1007/s40477-023-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/07/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE The aim of this study is to evaluate the acoustic and thermal properties of a plaque phantom. This is very important for the effective implementation of ultrasound not only in diagnosis but especially in treatment for the future. MATERIAL AND METHODS An evaluation of acoustic and thermal properties of plaque phantoms to test their suitability mainly for ultrasound imaging and therapy was presented. The evaluation included measurements of the acoustic propagation speed using pulse-echo technique, ultrasonic attenuation coefficient using through transmission immersion technique, and absorption coefficient. Moreover, thermal properties (thermal conductivity, volumetric specific heat capacity and thermal diffusivity) were measured with the transient method using a needle probe. RESULTS It was shown that acoustic and thermal properties of atherosclerotic plaque phantoms fall well within the range of reported values for atherosclerotic plaque and slightly different for thermal diffusivity and volumetric specific heat capacity for soft tissues. The mean value of acoustic and thermal properties and their standard deviation of plaque phantoms were 1523 ± 23 m/s for acoustic speed, 0.50 ± 0.02 W/mK for thermal conductivity, 0.30 ± 0.21 db/cm-MHz for ultrasonic absorption coefficient and 1.63 ± 0.46 db/cm-MHz for ultrasonic attenuation coefficient. CONCLUSIONS This study demonstrated that acoustic and thermal properties of atherosclerotic plaque phantoms were within the range of reported values. Future studies should be focused on the optimum recipe of the atherosclerotic plaque phantoms that mimics the human atherosclerotic plaque (agar 4% w/v, gypsum 10% w/v and butter 10% w/v) and can be used for HIFU therapy.
Collapse
Affiliation(s)
- Michalis Sotiriou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, 30 Archbishop Kyprianos Street, 3036, Limassol, Cyprus.
| |
Collapse
|
2
|
Rennoll V, McLane I, Eisape A, Grant D, Hahn H, Elhilali M, West JE. Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring. ACS APPLIED BIO MATERIALS 2023; 6:3241-3256. [PMID: 37470762 PMCID: PMC10804910 DOI: 10.1021/acsabm.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Acoustic sensors are able to capture more incident energy if their acoustic impedance closely matches the acoustic impedance of the medium being probed, such as skin or wood. Controlling the acoustic impedance of polymers can be achieved by selecting materials with appropriate densities and stiffnesses as well as adding ceramic nanoparticles. This study follows a statistical methodology to examine the impact of polymer type and nanoparticle addition on the fabrication of acoustic sensors with desired acoustic impedances in the range of 1-2.2 MRayls. The proposed method using a design of experiments approach measures sensors with diaphragms of varying impedances when excited with acoustic vibrations traveling through wood, gelatin, and plastic. The sensor diaphragm is subsequently optimized for body sound monitoring, and the sensor's improved body sound coherence and airborne noise rejection are evaluated on an acoustic phantom in simulated noise environments and compared to electronic stethoscopes with onboard noise cancellation. The impedance-matched sensor demonstrates high sensitivity to body sounds, low sensitivity to airborne sound, a frequency response comparable to two state-of-the-art electronic stethoscopes, and the ability to capture lung and heart sounds from a real subject. Due to its small size, use of flexible materials, and rejection of airborne noise, the sensor provides an improved solution for wearable body sound monitoring, as well as sensing from other mediums with acoustic impedances in the range of 1-2.2 MRayls, such as water and wood.
Collapse
Affiliation(s)
- Valerie Rennoll
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ian McLane
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Adebayo Eisape
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Drew Grant
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Helena Hahn
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - James E West
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Snehota M, Vachutka J, Ter Haar G, Dolezal L, Kolarova H. Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. ULTRASONICS 2020; 107:106167. [PMID: 32402858 DOI: 10.1016/j.ultras.2020.106167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 05/07/2023]
Abstract
Current in vitro sonication experiments show immense variability in experimental set-ups and methods used. As a result, there is uncertainty in the ultrasound field parameters experienced by sonicated samples, poor reproducibility of these experiments and thus reduced scientific value of the results obtained. The scope of this narrative review is to briefly describe mechanisms of action of ultrasound, list the most frequently used experimental set-ups and focus on a description of factors influencing the outcomes and reproducibility of these experiments. The factors assessed include: proper reporting of ultrasound exposure parameters, experimental geometry, coupling medium quality, influence of culture vessels, formation of standing waves, motion/rotation of the sonicated sample and the characteristics of the sample itself. In the discussion we describe pros and cons of particular exposure geometries and factors, and make a few recommendations as to how to increase the reproducibility and validity of the experiments performed.
Collapse
Affiliation(s)
- Martin Snehota
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| | - Jaromir Vachutka
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic.
| | - Gail Ter Haar
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London SM2 5PT, United Kingdom
| | - Ladislav Dolezal
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
4
|
Karaboce B, Cetin E, Durmus HO, Ozdingis M, Ozturk H, Mahmat K, Guler MA. Investigation of Different TMMs in High Intensity Focused Ultrasound Applications. 2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA) 2018:1-5. [DOI: 10.1109/memea.2018.8438646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Lin S, Zhang G, Leow CH, Tang MX. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents. Phys Med Biol 2017; 62:6884-6898. [PMID: 28718774 DOI: 10.1088/1361-6560/aa8076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.
Collapse
Affiliation(s)
- Shengtao Lin
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
6
|
Troia A, Cuccaro R, Schiavi A. Independent tuning of acoustic and mechanical properties of phantoms for biomedical applications of ultrasound. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5ed0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Cafarelli A, Miloro P, Verbeni A, Carbone M, Menciassi A. Speed of sound in rubber-based materials for ultrasonic phantoms. J Ultrasound 2016; 19:251-256. [PMID: 27965715 DOI: 10.1007/s40477-016-0204-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/10/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In this work we provide measurements of speed of sound (SoS) and acoustic impedance (Z) of some doped/non-doped rubber-based materials dedicated to the development of ultrasound phantoms. These data are expected to be useful for speeding-up the preparation of multi-organ phantoms which show similar echogenicity to real tissues. METHODS Different silicones (Ecoflex, Dragon-Skin Medium) and polyurethane rubbers with different liquid (glycerol, commercial detergent, N-propanol) and solid (aluminum oxide, graphene, steel, silicon powder) inclusions were prepared. SoS of materials under investigation was measured in an experimental setup and Z was obtained by multiplying the density and the SoS of each material. Finally, an anatomically realistic liver phantom has been fabricated selecting some of the tested materials. RESULTS SoS and Z evaluation for different rubber materials and formulations are reported. The presence of liquid additives appears to increase the SoS, while solid inclusions generally reduce the SoS. The ultrasound images of realized custom fabricated heterogeneous liver phantom and a real liver show remarkable similarities. CONCLUSIONS The development of new materials' formulations and the knowledge of acoustic properties, such as speed of sound and acoustic impedance, could improve and speed-up the development of phantoms for simulations of ultrasound medical procedures.
Collapse
Affiliation(s)
- A Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - P Miloro
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - A Verbeni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - M Carbone
- EndoCAS Center, Università di Pisa, Pisa, Italy
| | - A Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
8
|
Sellani G, Fernandes D, Nahari A, de Oliveira MF, Valois C, Pereira WCA, Machado CB. Assessing heating distribution by therapeutic ultrasound on bone phantoms and in vitro human samples using infrared thermography. J Ther Ultrasound 2016; 4:13. [PMID: 27051520 PMCID: PMC4820859 DOI: 10.1186/s40349-016-0058-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
Background Bioheat models have been proposed to predict heat distribution in multilayered biological tissues after therapeutic ultrasound (TUS) stimulation. However, evidence on its therapeutic benefit is still controversial for many clinical conditions. The aim of this study was to evaluate and to compare the TUS heating distribution on commercially available bone phantoms and in vitro femur and tibia human samples, at 1 MHz and several ultrasonic pulse regimens, by means of a thermographic image processing technique. Methods An infrared camera was used to capture an image after each 5-min 1-MHz TUS stimulation on bone phantoms, as well as in vitro femur and tibia samples (N = 10). An intensity-based processing algorithm was applied to estimate temperature distribution. Sections of five femurs in the coronal plane were also used for the evaluation of heat distribution inside the medullar canal. Results Temperature increased up to 8.2 and 9.8 °C for the femur and tibia, respectively. Moreover, the temperature increased up to 10.8 °C inside the medullar canal. Although temperature distributions inside the region of interest (ROI) were significantly different (p < 0.001), the average and standard deviation values for bone phantoms were more similar to the femur than to the tibia samples. Pulsed regimens caused lower increments in temperature than continuous sonication, as expected. Conclusions Commercially available bone phantoms could be used in research focusing on thermal effects of ultrasound. Small differences in mean and standard deviation temperatures were observed between bone samples and phantoms. Temperature can reach more than 10 °C inside the medullar canal on a fixed probe position which may lead to severe cellular damage.
Collapse
Affiliation(s)
- Gabriella Sellani
- Biomedical Ultrasound Laboratory (Applied Research Department), Estácio de Sá University, Rua do Bispo, n. 83 - Block F, Rio Comprido, Rio de Janeiro 20261-063 Brazil
| | - Dalila Fernandes
- Biomedical Ultrasound Laboratory (Applied Research Department), Estácio de Sá University, Rua do Bispo, n. 83 - Block F, Rio Comprido, Rio de Janeiro 20261-063 Brazil
| | - Abigail Nahari
- Biomedical Ultrasound Laboratory (Applied Research Department), Estácio de Sá University, Rua do Bispo, n. 83 - Block F, Rio Comprido, Rio de Janeiro 20261-063 Brazil
| | - Melissa Fabrício de Oliveira
- Biomedical Ultrasound Laboratory (Applied Research Department), Estácio de Sá University, Rua do Bispo, n. 83 - Block F, Rio Comprido, Rio de Janeiro 20261-063 Brazil
| | - Christiana Valois
- Globus Sports and Health Technology, Via Vittorio Veneto, 52, 31013 Codognè, TV Itália
| | - Wagner C A Pereira
- Biomedical Engineering Program, COPPE/Federal University of Rio de Janeiro, Av. Horácio Macedo, 2030. Technology Center, Block H - Room H327, Cidade Universitária, Rio de Janeiro, 21941-914 Brazil
| | - Christiano B Machado
- Biomedical Ultrasound Laboratory (Applied Research Department), Estácio de Sá University, Rua do Bispo, n. 83 - Block F, Rio Comprido, Rio de Janeiro 20261-063 Brazil
| |
Collapse
|
9
|
Aksoy HG. Broadband ultrasonic spectroscopy for the characterization of viscoelastic materials. ULTRASONICS 2016; 67:168-177. [PMID: 26859428 DOI: 10.1016/j.ultras.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
In this study, non-destructive experimental method based on acoustic through transmission technique along with broadband spectroscopy is proposed in order to determine the linear viscoelastic material properties in 20-400 kHz range. Material properties such as phase velocity and attenuation coefficient of longitudinal and shear waves are measured. Diffraction correction developed for focused transducers is used to eliminate the spreading error due to the spherical wave generated by the hydrophone which is used as a transmitter. Method is validated on polymethyl methacrylate (PMMA). Both longitudinal wave velocity, shear wave velocity and attenuation coefficient of longitudinal wave of PMMA are in agreement with the previously reported values which are given in the literature. Attenuation coefficient of shear wave in PMMA is measured successfully and in agreement with the theoretical predictions. Longitudinal wave velocity and corresponding attenuation coefficient of gelatine gel are also measured.
Collapse
|
10
|
Schiavi A, Cuccaro R, Troia A. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications. J Mech Behav Biomed Mater 2016; 53:119-130. [DOI: 10.1016/j.jmbbm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
11
|
Martínez JM, Jarosz BJ. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization. Phys Med Biol 2015; 60:1879-900. [PMID: 25668331 DOI: 10.1088/0031-9155/60/5/1879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62 ± 1 dB m(-1), 115 ± 4 dB m(-1) and 175 ± 9 dB m(-1), respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040 ± 40 kg m(-3) and 1545 ± 44 m s(-1), respectively. The average thermal conductivity was 0.532 W m(-1) K(-1). The T1 and T2 values of the TMM were 207 ± 4 and 36.2 ± 0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.
Collapse
Affiliation(s)
- José M Martínez
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6
| | | |
Collapse
|