1
|
Wiacek A, Oluyemi E, Myers K, Ambinder E, Bell MAL. Coherence Metrics for Reader-Independent Differentiation of Cystic From Solid Breast Masses in Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:256-268. [PMID: 36333154 PMCID: PMC9712258 DOI: 10.1016/j.ultrasmedbio.2022.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Traditional breast ultrasound imaging is a low-cost, real-time and portable method to assist with breast cancer screening and diagnosis, with particular benefits for patients with dense breast tissue. We previously demonstrated that incorporating coherence-based beamforming additionally improves the distinction of fluid-filled from solid breast masses, based on qualitative image interpretation by board-certified radiologists. However, variable sensitivity (range: 0.71-1.00 when detecting fluid-filled masses) was achieved by the individual radiologist readers. Therefore, we propose two objective coherence metrics, lag-one coherence (LOC) and coherence length (CL), to quantitatively determine the content of breast masses without requiring reader assessment. Data acquired from 31 breast masses were analyzed. Ideal separation (i.e., 1.00 sensitivity and specificity) was achieved between fluid-filled and solid breast masses based on the mean or median LOC value within each mass. When separated based on mean and median CL values, the sensitivity/specificity decreased to 1.00/0.95 and 0.92/0.89, respectively. The greatest sensitivity and specificity were achieved in dense, rather than non-dense, breast tissue. These results support the introduction of an objective, reader-independent method for automated diagnoses of cystic breast masses.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Eniola Oluyemi
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kelly Myers
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Emily Ambinder
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Snehota M, Vachutka J, Ter Haar G, Dolezal L, Kolarova H. Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. ULTRASONICS 2020; 107:106167. [PMID: 32402858 DOI: 10.1016/j.ultras.2020.106167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 05/07/2023]
Abstract
Current in vitro sonication experiments show immense variability in experimental set-ups and methods used. As a result, there is uncertainty in the ultrasound field parameters experienced by sonicated samples, poor reproducibility of these experiments and thus reduced scientific value of the results obtained. The scope of this narrative review is to briefly describe mechanisms of action of ultrasound, list the most frequently used experimental set-ups and focus on a description of factors influencing the outcomes and reproducibility of these experiments. The factors assessed include: proper reporting of ultrasound exposure parameters, experimental geometry, coupling medium quality, influence of culture vessels, formation of standing waves, motion/rotation of the sonicated sample and the characteristics of the sample itself. In the discussion we describe pros and cons of particular exposure geometries and factors, and make a few recommendations as to how to increase the reproducibility and validity of the experiments performed.
Collapse
Affiliation(s)
- Martin Snehota
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| | - Jaromir Vachutka
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic.
| | - Gail Ter Haar
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London SM2 5PT, United Kingdom
| | - Ladislav Dolezal
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
3
|
Hossen Z, Abrar MA, Ara SR, Hasan MK. RATE-iPATH: On the design of integrated ultrasonic biomarkers for breast cancer detection. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Nizam NI, Ara SR, Hasan MK. Classification of breast lesions using quantitative ultrasound biomarkers. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Shao D, Yuan Y, Xiang Y, Yu Z, Liu P, Liu DC. Artifacts detection-based adaptive filtering to noise reduction of strain imaging. ULTRASONICS 2019; 98:99-107. [PMID: 31238255 DOI: 10.1016/j.ultras.2019.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Strain imaging in medical ultrasound is the imaging modality of elastic properties of biological tissue. In general, strain image will suffer from artifacts noise, which degrades lesion detectability and increases the likelihood of misdiagnosis. How to both suppress artifacts effectively and preserve the structure is vital for diagnosis and also for image post-processing. The bilateral filtering can reduce artifact noise and, at the same time, maintain the tissue structure. However, the balance between noise suppression and edge preservation often makes the threshold selection difficult. This paper is to solve the problem of difficult threshold selection in bilateral filtering. The probability distribution function of amplitude modulation noise in this paper is derived from the statistics of uncompressed speckle. The statistical model of artifact formation is useful for designing an adaptive fast bilateral filter for artifact reduction in ultrasound strain imaging. Both simulation and phantom testing show that the proposed method can improve the quality of ultrasonic strain imaging. Furthermore, the elastographic signal-to-noise ratio was increased by 129.91% and 52.36% for simulated and phantom strain images. The elastographic contrast-to-noise ratio was increased by 521.42% and 218.07% for simulated and phantom strain images, respectively. As indicated by the profiles, the proposed method produces a better result for the purpose of visualization.
Collapse
Affiliation(s)
- Dangguo Shao
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China.
| | - Ye Yuan
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China
| | - Yan Xiang
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China.
| | - Zhengtao Yu
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China
| | - Paul Liu
- School of Computer Science, Sichuan University, Chengdu, China; Saset Healthcare Inc. Chengdu, China
| | - Dong C Liu
- School of Computer Science, Sichuan University, Chengdu, China; Saset Healthcare Inc. Chengdu, China
| |
Collapse
|
6
|
Hashemi HS, Fallone S, Boily M, Towers A, Kilgour RD, Rivaz H. Assessment of Mechanical Properties of Tissue in Breast Cancer-Related Lymphedema Using Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:541-550. [PMID: 30334756 DOI: 10.1109/tuffc.2018.2876056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast cancer-related lymphedema is a consequence of a malfunctioning lymphatic drainage system resulting from surgery or some other form of treatment. In the initial stages, minor and reversible increases in the fluid volume of the arm are evident. As the stages progress over time, the underlying pathophysiology dramatically changes with an irreversible increase in arm volume most likely due to a chronic local inflammation leading to adipose tissue hypertrophy and fibrosis. Clinicians have subjective ways to stage the degree and severity such as the pitting test which entails manually comparing the elasticity of the affected and unaffected arms. Several imaging modalities can be used but ultrasound appears to be the most preferred because it is affordable, safe, and portable. Unfortunately, ultrasonography is not typically used for staging lymphedema, because the appearance of the affected and unaffected arms is similar in B-mode ultrasound images. However, novel ultrasound techniques have emerged, such as elastography, which may be able to identify changes in mechanical properties of the tissue related to detection and staging of lymphedema. This paper presents a novel technique to compare the mechanical properties of the affected and unaffected arms using quasi-static ultrasound elastography to provide an objective alternative to the current subjective assessment. Elastography is based on time delay estimation (TDE) from ultrasound images to infer displacement and mechanical properties of the tissue. We further introduce a novel method for TDE by incorporating higher order derivatives of the ultrasound data into a cost function and propose a novel optimization approach to efficiently minimize the cost function. This method works reliably with our challenging patient data. We collected radio frequency ultrasound data from both arms of seven patients with stage 2 lymphedema, at six different locations in each arm. The ratio of strain in skin, subcutaneous fat, and skeletal muscle divided by strain in the standoff gel pad was calculated in the unaffected and affected arms. The p -values using a Wilcoxon sign-rank test for the skin, subcutaneous fat, and skeletal muscle were 1.24×10-5 , 1.77×10-8 , and 8.11×10-7 respectively, showing differences between the unaffected and affected arms with a very high level of significance.
Collapse
|