1
|
Rathnayake PY, Yu R, Yeo SE, Choi YS, Hwangbo S, Yong HI. Application of Ultrasound to Animal-Based Food to Improve Microbial Safety and Processing Efficiency. Food Sci Anim Resour 2025; 45:199-222. [PMID: 39840248 PMCID: PMC11743837 DOI: 10.5851/kosfa.2024.e128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Animal-based foods such as meat, dairy, and eggs contain abundant essential proteins, vitamins, and minerals that are crucial for human nutrition. Therefore, there is a worldwide growing demand for animal-based products. Since animal-based foods are vital resources of nutrients, it is essential to ensure their microbial safety which may not be ensured by traditional food preservation methods. Although thermal food preservation methods ensure microbial inactivation, they may degrade the nutritional value, physicochemical properties, and sensory qualities of food. Consequently, non-thermal, ultrasound food preservation methods are used in the food industry to evaluate food products and ensure their safety. Ultrasound is the sound waves beyond the human audible range, with frequencies greater than 20 kHz. Two types of ultrasounds can be used for food processing: low-frequency, high-intensity (20-100 kHz, 10-1,000 W/cm2) and high-frequency, low-intensity (>1 MHz, <1 W/cm2). This review emphasizes the application of ultrasound to improve the microbial safety of animal-based foods. It further discusses the ultrasound generation mechanism, ultrasound technique for microbial inactivation, and application of ultrasound in various processing operations, namely thawing, extraction, and emulsification.
Collapse
Affiliation(s)
| | - Rina Yu
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| | - So Eun Yeo
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | | | - Hae In Yong
- Division of Animal and Dairy Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Panera-Martínez S, Capita R, Pedriza-González Á, Díez-Moura M, Riesco-Peláez F, Alonso-Calleja C. Occurrence, Antibiotic Resistance and Biofilm-Forming Ability of Listeria monocytogenes in Chicken Carcasses and Cuts. Foods 2024; 13:3822. [PMID: 39682895 DOI: 10.3390/foods13233822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
A total of 104 samples of chicken meat acquired on the day of slaughter from two slaughterhouses in northwestern Spain were analyzed. These comprised 26 carcasses and 26 cuts from each of the two establishments. An average load of 5.39 ± 0.61 log10 cfu/g (total aerobic counts) and 4.90 ± 0.40 log10 cfu/g (psychrotrophic microorganisms) were obtained, with differences (p < 0.05) between types of samples and between slaughterhouses. Culturing methods involving isolation based on the UNE-EN-ISO 11290-1:2018 norm and identification of isolates by polymerase chain reaction (PCR) to detect the lmo1030 gene allowed the detection of Listeria monocytogenes in 75 samples (72.1% of the total; 50.0% of the carcasses and 94.2% of the cuts). The 75 isolates, one for each positive sample, were tested for resistance against a panel of 15 antibiotics of clinical interest by the disc diffusion method. All isolates belonged to the serogroup IIa (multiplex PCR assay) and showed resistance to between four and ten antibiotics, with an average value of 5.7 ± 2.0 resistances per isolate, this rising to 7.0 ± 2.1 when strains with resistance and reduced susceptibility were taken together. A high prevalence of resistance was observed for antibiotics belonging to the cephalosporin and quinolone families. However, the level of resistance was low for antibiotics commonly used to treat listeriosis (e.g., ampicillin or gentamicin). Nine different resistance patterns were noted. One isolate with each resistance pattern was tested for its ability to form biofilms on polystyrene during 72 h at 12 °C. The total biovolume of the biofilms registered through confocal laser scanning microscopy (CLSM) in the observation field of 16,078.24 μm2 ranged between 13,967.7 ± 9065.0 μm3 and 33,478.0 ± 23,874.1 μm3, and the biovolume of inactivated bacteria between 0.5 ± 0.4 μm3 and 179.1 ± 327.6 μm3. A direct relationship between the level of resistance to antibiotics and the ability of L. monocytogenes strains to form biofilms is suggested.
Collapse
Affiliation(s)
- Sarah Panera-Martínez
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | | | - María Díez-Moura
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems and Automation, School of Industrial, Computer and Aerospace Engineering, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
3
|
Qian J, Chen S, Huo S, Wang F, Zou B, Zhou C, Zhang L, Ma H. Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication. Foods 2024; 13:3600. [PMID: 39594017 PMCID: PMC11593853 DOI: 10.3390/foods13223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Dual-frequency and moderate thermosonication (TS, 300 + 300 W, 20 + 40 kHz, 25~60 °C) was employed to inactivate Pichia membranifaciens in soybean paste. The aim was to evaluate the effect of TS on the inactivation of P. membranaefaciens and on the quality of soybean paste. The Weibull model fitted the survival data of P. membranaefaciens in thermosonicated soybean paste well and a decrease of 5 log of P. membranaefaciens in soybean paste was obtained at TS50°C, TS55°C, TS60°C, and T65°C for 15.41, 7.49, 2.27, and 18.61 min. Scanning electron microscope observation revealed TS50°C damaged the cell structure, leading to the leakage of intracellular contents. The physicochemical properties of soybean paste treated by TS were more retained than in paste treated by heat. The GC-MS analysis indicated that the flavor components had increased after TS treatment, especially at TS50°C. In conclusion, TS can inactive P. membranaefaciens in soybean paste without causing significant changes in its physicochemical and flavor qualities.
Collapse
Affiliation(s)
- Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Shubei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Province and Education Ministry Cosponsored Synergistic Innovation Center of Modern Agricultural Equipment, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (S.C.); (S.H.); (F.W.); (B.Z.); (C.Z.); (L.Z.); (H.M.)
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
4
|
Chen BR, Roobab U, Madni GM, Abdi G, Zeng XA, Aadil RM. A review of emerging applications of ultrasonication in Comparison with non-ionizing technologies for meat decontamination. ULTRASONICS SONOCHEMISTRY 2024; 108:106962. [PMID: 38943850 PMCID: PMC11261440 DOI: 10.1016/j.ultsonch.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.
Collapse
Affiliation(s)
- Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates.
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169 Iran.
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Lee Y, Yoon Y. Principles and Applications of Non-Thermal Technologies for Meat Decontamination. Food Sci Anim Resour 2024; 44:19-38. [PMID: 38229860 PMCID: PMC10789560 DOI: 10.5851/kosfa.2023.e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024] Open
Abstract
Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.
Collapse
Affiliation(s)
- Yewon Lee
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
6
|
Lauteri C, Ferri G, Piccinini A, Pennisi L, Vergara A. Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods 2023; 12:foods12061212. [PMID: 36981137 PMCID: PMC10048265 DOI: 10.3390/foods12061212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
An efficient microbiological decontamination protocol is required to guarantee safe food products for the final consumer to avoid foodborne illnesses. Ultrasound and non-thermal technology combinations represent innovative methods adopted by the food industry for food preservation and safety. Ultrasound power is commonly used with a frequency between 20 and 100 kHz to obtain an “exploit cavitation effect”. Microbial inactivation via ultrasound derives from cell wall damage, the oxidation of intracellular amino acids and DNA changing material. As an inactivation method, it is evaluated alone and combined with other non-thermal technologies. The evidence shows that ultrasound is an important green technology that has a good decontamination effect and can improve the shelf-life of products. This review aims to describe the applicability of ultrasound in the food industry focusing on microbiological decontamination, reducing bacterial alterations caused by food spoilage strains and relative foodborne intoxication/infection.
Collapse
|
7
|
Zhao X, Zhou C, Xu X, Zeng X, Xing T. Ultrasound combined with carrageenan and curdlan addition improved the gelation properties of low-salt chicken meat paste. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lan W, Zhang B, Zhou D, Xie J. Ultrasound assisted slightly acidic electrolyzed water treatment on the protein structure stability of vacuum‐packaged sea bass (
Lateolabrax japonicas
) during refrigerated storage. J Food Saf 2022. [DOI: 10.1111/jfs.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Dapeng Zhou
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| |
Collapse
|
9
|
Barretto TL, Sanches MAR, Pateiro M, Lorenzo JM, Telis-Romero J, da Silva Barretto AC. Recent advances in the application of ultrasound to meat and meat products: Physicochemical and sensory aspects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2028285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Tiago Luis Barretto
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
- Federal Institute of São Paulo – Ifsp, Campus Barretos, São Paulo, Brazil
| | - Marcio Augusto Ribeiro Sanches
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de La Carne de Galicia, Avda. Galicia N° 4, Parque Tecnológico de Galícia, San Cibrao Das Viñas, Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Avda. Galicia N° 4, Parque Tecnológico de Galícia, San Cibrao Das Viñas, Ourense, Spain
- Área de Tecnologia de Los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Javier Telis-Romero
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| | - Andrea Carla da Silva Barretto
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| |
Collapse
|
10
|
Carrillo-Lopez LM, Cruz-Garibaldi BY, Huerta-Jimenez M, Garcia-Galicia IA, Alarcon-Rojo AD. The Physicochemical, Microbiological, and Structural Changes in Beef Are Dependent on the Ultrasound System, Time, and One-Side Exposition. Molecules 2022; 27:541. [PMID: 35056855 PMCID: PMC8780576 DOI: 10.3390/molecules27020541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/01/2022] Open
Abstract
The effect of high-intensity ultrasound (HIU) system (bath, 37 kHz and 90 W/cm2; or probe, 24 kHz and 400 W) and application time (25 or 50 min, one-side exposition) on the properties of bovine Longissimus lumborum after 7 d of storage at 4 °C was studied. The bath system significantly increased the lightness of the muscle, while other color parameters (a*, b*, hue, and chroma) were not different from the control. The water holding capacity and shear force decreased significantly (3.1-5% and 0.59-0.72 kgf, respectively) in sonicated meat independently of the system, favoring the tenderization of the muscle after storage. Microstructural changes observed in the HIU-exposed surface provided evidence of a higher area of interfibrillar spaces (1813 vs. 705 µm2 in the control), producing tenderization of the muscle, compared with the control. HIU significantly increased counts of total aerobic and coliform bacteria, especially after 50 min of ultrasonication. HIU also increased lactic acid bacterial counts in the bath system. Single-sided muscle exposition to ultrasound may produce sufficient significant changes in muscle properties, which could decrease long treatment times that would be needed for the exposition of both sides. HIU in bath systems increases tenderness by modifying meat ultrastructure, with no significant changes in physicochemical parameters. Nevertheless, microbiological quality may need to be considered during the process due to a slight increase in bacterial counts.
Collapse
Affiliation(s)
- Luis M. Carrillo-Lopez
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico;
| | - Bianka Y. Cruz-Garibaldi
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| | - Mariana Huerta-Jimenez
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico;
| | - Ivan A. Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| | - Alma D. Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| |
Collapse
|
11
|
|
12
|
Novel Techniques for Microbiological Safety in Meat and Fish Industries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The consumer tendency towards convenient, minimally processed meat items has placed extreme pressure on processors to certify the safety of meat or meat products without compromising the quality of product and to meet consumer’s demand. This has prompted difficulties in creating and carrying out novel processing advancements, as the utilization of more up-to-date innovations may influence customer decisions and assessments of meat and meat products. Novel advances received by the fish and meat industries for controlling food-borne microbes of huge potential general wellbeing concern, gaps in the advancements, and the requirement for improving technologies that have been demonstrated to be effective in research settings or at the pilot scale shall be discussed. Novel preparing advancements in the meat industries warrant microbiological approval before being named as industrially suitable alternatives and authorizing infra-structural changes. This miniature review presents the novel techniques for the microbiological safety of meat products, including both thermal and non-thermal methods. These technologies are being successfully implemented and rationalized in subsisting processing surroundings.
Collapse
|
13
|
Sun J, Wang D, Zhang J, Sun Z, Xiong Q, Liu F. Antibacterial and Antibiofilm Effect of Ultrasound and Mild Heat Against a Multidrug-Resistant Klebsiella pneumoniae Stain Isolated from Meat of Yellow-Feathered Chicken. Foodborne Pathog Dis 2021; 19:70-79. [PMID: 34883029 DOI: 10.1089/fpd.2021.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae is an important foodborne pathogen with high biofilm-forming ability, which is continuously detected in food products in recent years. The antibacterial and antibiofilm activities and mechanism of ultrasonication in combination with heat treatment against K. pneumoniae were studied. K. pneumoniae planktonic and biofilm cells were treated with ultrasound (US), mild heat treatment (HT50, HT60, and HT70), and combinations of US and mild heat treatment (UH50, UH60, and UH70) for 5, 10, 20, 30, and 60 min. Results showed that the combination of US and mild heat treatment was more effective in inactivating K. pneumoniae planktonic and biofilm cells than the single treatment by counting viable bacteria. In addition, confocal laser scanning microscopy, scanning electron microscopy, and analysis of leakage of intracellular substances have revealed that the combination treatment effectively damaged the integrity of bacterial cell membrane and increased cell permeability, which led to the quick release of adenosine triphosphate (ATP) and macromolecular substances of nucleic acids and proteins. Moreover, the activities of respiratory chain dehydrogenase in planktonic and biofilm cells significantly decreased after UH treatment. The results indicated that ultrasonication and mild heat treatment had a synergistic effect on the inactivation of K. pneumoniae planktonic and biofilm cells by damaging the cell membrane and inhibiting intercellular cell respiration.
Collapse
Affiliation(s)
- Jinyue Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China.,Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Debao Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiaojiao Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
14
|
Sun J, Wang D, Sun Z, Liu F, Du L, Wang D. The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems. ULTRASONICS SONOCHEMISTRY 2021; 80:105801. [PMID: 34688141 PMCID: PMC8551818 DOI: 10.1016/j.ultsonch.2021.105801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.
Collapse
Affiliation(s)
- Jinyue Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
15
|
Zhang Z, Feng Y, Wang J, Zhang W, Yun F, Guo J. Kinetics of microwave liquid-phase desorption with chemical dissociation: SO2 desorption of basic aluminum sulfate desulfurization rich liquid. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Possas A, Valero A, García-Gimeno RM, Pérez-Rodríguez F, Mendes de Souza P. Combining UV-C technology and caffeine application to inactivate Escherichia coli on chicken breast fillets. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Arruda TR, Vieira P, Silva BM, Freitas TD, Amaral AJB, Vieira ENR, Leite Júnior BRDC. What are the prospects for ultrasound technology in food processing? An update on the main effects on different food matrices, drawbacks, and applications. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Patty Vieira
- Department of Food Technology Federal University of Viçosa Viçosa Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Aykın‐Dinçer E, Ergin F, Küçükçetin A. Reduction of
Salmonella enterica
in Turkey breast slices kept under aerobic and vacuum conditions by application of lactic acid, a bacteriophage, and ultrasound. J Food Saf 2021. [DOI: 10.1111/jfs.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elif Aykın‐Dinçer
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| | - Firuze Ergin
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| | - Ahmet Küçükçetin
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| |
Collapse
|
19
|
Barroug S, Chaple S, Bourke P. Combination of Natural Compounds With Novel Non-thermal Technologies for Poultry Products: A Review. Front Nutr 2021; 8:628723. [PMID: 34169086 PMCID: PMC8217606 DOI: 10.3389/fnut.2021.628723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing challenge, with the driver to minimize chemical additives and their residues in the food processing chain. High-value fresh protein products such as poultry meat are very susceptible to spoilage due to oxidation and bacterial contamination. The combination of non-thermal processing interventions with nature-based alternatives is emerging as a useful tool for potential adoption for safe poultry meat products. Natural compounds are produced by living organisms that are extracted from nature and can be used as antioxidant, antimicrobial, and bioactive agents and are often employed for other existing purposes in food systems. Non-thermal technology interventions such as high-pressure processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are gaining increasing importance due to the advantages of retaining low temperatures, nutrition profiles, and short treatment times. The non-thermal unit process can act as an initial obstacle promoting the reduction of microflora, while natural compounds can provide an active obstacle either in addition to processing or during storage time to maintain quality and inhibit and control growth of residual contaminants. This review presents the application of natural compounds along with emerging non-thermal technologies to address risks in fresh poultry meat.
Collapse
Affiliation(s)
- Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Sciences, Institute Global Food Security, The Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
20
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
The changing microbiome of poultry meat; from farm to fridge. Food Microbiol 2021; 99:103823. [PMID: 34119108 DOI: 10.1016/j.fm.2021.103823] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Chickens play host to a diverse community of microorganisms which constitute the microflora of the live bird. Factors such as diet, genetics and immune system activity affect this complex population within the bird, while external influences including weather and exposure to other animals alter the development of the microbiome. Bacteria from these settings including Campylobacter and Salmonella play an important role in the quality and safety of end-products from these birds. Further steps, including washing and chilling, within the production cycle aim to control the proliferation of these microbes as well as those which cause product spoilage. These steps impose specific selective pressures upon the microflora of the meat product. Within the next decade, it is forecast that poultry meat, particularly chicken will become the most consumed meat globally. However, as poultry meat is a frequently cited reservoir of zoonotic disease, understanding the development of its microflora is key to controlling the proliferation of important spoilage and pathogenic bacterial groups present on the bird. Whilst several excellent reviews exist detailing the microbiome of poultry during primary production, others focus on fate of important poultry pathogens such as Campylobacter and Salmonella spp. At farm and retail level, and yet others describe the evolution of spoilage microbes during spoilage. This review seeks to provide the poultry industry and research scientists unfamiliar with food technology process with a holistic overview of the key changes to the microflora of broiler chickens at each stage of the production and retail cycle.
Collapse
|
22
|
Valenzuela C, Garcia‐Galicia IA, Paniwnyk L, Alarcon‐Rojo AD. Physicochemical characteristics and shelf life of beef treated with high‐intensity ultrasound. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Valenzuela
- Faculty of Animal Science and Ecology Autonomous University of Chihuahua Chihuahua Mexico
| | | | - Larysa Paniwnyk
- Faculty of Health and Life Sciences Alison Gingell Building, Coventry University Coventry UK
| | | |
Collapse
|
23
|
Abstract
Abstract
Purpose of Review
The market for minimally processed products is constantly growing due to consumer demand. Besides food safety and increased shelf life, nutritional value and sensory appearance also play a major role and have to be considered by the food processors. Therefore, the purpose of the review was to summarize recent knowledge about important alternative non-thermal physical technologies, including both those which are actually applied (e.g. high-pressure processing and irradiation) and those demonstrating a high potential for future application in raw meat decontamination (e.g. pulsed light UV-C and cold plasma treatment). The evaluation of the methods is carried out with respect to efficiency, preservation of food quality and consumer acceptance.
Recent Findings
It was evident that significantly higher bacterial reductions are achieved with gamma-ray, electron beam irradiation and high pressure, followed by pulsed light, UV-C and cold plasma, with ultrasound alone proving the least effective. As a limitation, it must be noted that sensory deviations may occur and that legal approvals may have to be applied for.
Summary
In summary, it can be concluded that physical methods have the potential to be used for decontamination of meat surfaces in addition to common hygiene measures. However, the aim of future research should be more focused on the combined use of different technologies to further increase the inactivation effects by keeping meat quality at the same time.
Collapse
|
24
|
Hashemi SMB, Jafarpour D. Antimicrobial and antioxidant properties of Saturn peach subjected to ultrasound-assisted osmotic dehydration. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00842-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Yan H, Cui Z, Manoli T, Zhang H. Recent advances in non-thermal disinfection technologies in the food industry. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Han Yan
- School of Food Science, Henan Institute of Science and Technology
| | - ZhenKun Cui
- School of Food Science, Henan Institute of Science and Technology
| | - Tatiana Manoli
- Faculty of Technology and Commodity Science of Food Products and Food Business, Odessa National Academy of Food Technologies
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology
| |
Collapse
|
26
|
Dai J, Bai M, Li C, Cui H, Lin L. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Efficacy of Ultrasonic-Assisted Curing Is Dependent on Muscle Size and Ultrasonication System. Processes (Basel) 2020. [DOI: 10.3390/pr8091015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrasound-assisted marinade is a promising technology for reducing the time of traditional immersion marination. This study evaluated the effect of the ultrasonic system (bath or probe, amplitude 50 or 100%) and muscle sample size (3 or 5 cm3) on physicochemical quality, yield (salt content, fresh weight, and relative fresh weight), and bacteria counts associated with pork. The results showed a significantly high salt (p < 0.0001) content in 3 cm3 (11.54%) and 5 cm3 (8.88%) samples after 24 h marination by immersion. The 3 cm3 cubes marinated in a 100% probe system for 20 min presented an amount of salt (9.55%) that was quite close to the controls. The 3 cm3 samples treated by immersion and in a 50% probe system gained more relative weight (in relation to the initial weight, 7.45 and 6.64%, respectively) after 7 d at 4 °C. Meanwhile the 5 cm3 cubes marinated by immersion gained 8.1%. The other treatments showed a weight loss after treatment. Although significant differences were found in the fresh weight and in water holding capacity (WHC) in the 3 and 5 cm3 meat samples, the relative fresh weight is a real measure of weight gain, more relevant for the industry. Thus, the samples with the highest salt transfer experienced a phenomenon of “dehydration”, retaining less water. The 3 and 5 cm3 cubes marinated by immersion presented orange color tones due to the long processing time, while the probe system produced redder and brighter tones. Ultrasound as a technology to assist in marinades is not efficient for bacteria control of mesophilic, psychrophilic, or coliform. However, a significant increase in lactic acid bacteria (LAB) counts may bring benefits for meat preservation during refrigerated storage.
Collapse
|
28
|
Al-Hilphy AR, Al-Temimi AB, Al Rubaiy HHM, Anand U, Delgado-Pando G, Lakhssassi N. Ultrasound applications in poultry meat processing: A systematic review. J Food Sci 2020; 85:1386-1396. [PMID: 32333397 DOI: 10.1111/1750-3841.15135] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/30/2022]
Abstract
Ultrasound (US) is classified as a nonthermal treatment and it is used in food processing at a frequency range between 20 kHz and 1 MHz. Cavitation bubbles occur when the US strength is high enough to generate rarefaction that exceeds the intermolecular attraction forces in the medium. Currently, US is widely used in meat industries to enhance procedures, such as meat tenderization, emulsification mass transfer, marination, freezing, homogenization, crystallization, drying, and microorganism inactivation. In addition, combining ultrasonic energy with a sanitizing agent has a synergistic effect on microbial reduction. When poultry meat is treated using US, the expected quality is often better than the traditional methods, such as sanitization and freezing. US can be considered as a novel green technology for tenderizing and decontamination of poultry meat since both Escherichia coli and Salmonella are sensible to US. US improves the physical and chemical properties of meat proteins and can lead to a decrease in the α-helix in intramuscular protease complex in addition to a reduction in the viscosity coefficients. Therefore, ultrasonic treatment can be applied to enhance the textural properties of chicken meat. US can also be used to improve the drying rate when used under vacuum, compared with other traditional techniques. This review focuses on the potential of US applications in the management of poultry industries as the demand for good quality meat proteins is increasing worldwide.
Collapse
Affiliation(s)
- Asaad R Al-Hilphy
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Ammar B Al-Temimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | | | - Uttpal Anand
- Department of Molecular and Cellular Engineering (MCE), Jacob Institute of Biotechnology and Bioengineering Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Gonzalo Delgado-Pando
- Department of Food Quality and Sensory Science, Teagasc, Food Research Centre Ashtown, Dublin, 15, Ireland
| | - Naoufal Lakhssassi
- Department of Plant Soil and Agricultural Systems, Agriculture College, Southern Illinois University, Carbondale, IL, 62901, U.S.A
| |
Collapse
|
29
|
Kehinde BA, Sharma P, Kaur S. Recent nano-, micro- and macrotechnological applications of ultrasonication in food-based systems. Crit Rev Food Sci Nutr 2020; 61:599-621. [PMID: 32208850 DOI: 10.1080/10408398.2020.1740646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a neoteric and rising demand for nutritional and functional foods which behooves food processors to adopt processing techniques with optimal conservation of bioactive components in foods and with minimal pernicious impacts on the environment. Ultrasonication, a mechanochemical technique has proven to be an efficacious panacea to these concerns. In this review, an analytic exploration of recent researches and designs regarding ultrasound methodology and equipment on diverse food systems, technological scales, procedural parameters and outcomes of such experimentations optimally scrutinized. The relative effects of ultrasonication on food formulations, components and attributes such as nanoemulsions, nanocapsules, proteins, micronutrients, sensory and mechanical characteristics are evaluatively delineated. In food systems where ultrasonication was employed, it was found to have a remarkable effect on one or more quality parameters. This review is a supplementation to the pedagogical awareness to scholars on the suitability of ultrasonication for research procedures, and a call to industrial food brands on the adoption of this technique for the development of foods with optimally sustained nutrient profiles.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
30
|
da Silva JS, Voss M, de Menezes CR, Barin JS, Wagner R, Campagnol PCB, Cichoski AJ. Is it possible to reduce the cooking time of mortadellas using ultrasound without affecting their oxidative and microbiological quality? Meat Sci 2020; 159:107947. [DOI: 10.1016/j.meatsci.2019.107947] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022]
|
31
|
Gonzalez-Gonzalez L, Alarcon-Rojo AD, Carrillo-Lopez LM, Garcia-Galicia IA, Huerta-Jimenez M, Paniwnyk L. Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Sci 2019; 160:107963. [PMID: 31693966 DOI: 10.1016/j.meatsci.2019.107963] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Quality of bovine longissimus lumborum, infraspinatus and cleidooccipitalis muscles after high-intensity ultrasound (HIU; 40 kHz and a power of 11 W/cm2 for 0, 40, 60, and 80 min) and aging (0, 7 and 14 d) was evaluated. The effects of HIU on pH and color of meat were not considered negative. HIU improved water holding capacity (WHC) of l.lumborum and infraspinatus only after aging. Whereas, the WHC of cleidooccipitalis increased immediately after sonication. The total collagen of HIU treated samples was significantly lower compared to the untreated samples. Ultrasonication for 80 min was the most effective for infraspinatus and cleidooccipitalis. Toughness decreased with HIU, iii nfraspinatus and l.lumborum tenderized more than cleidooccipitalis. HIU application and 7 d aging is an excellent combined treatment to improve tenderness of the three muscles. Infraspinatus was the most tender meat. HIU could help industry to improve the quality of beef as it helps in tenderization and accelerates maduration particularly of l.lumborum.
Collapse
Affiliation(s)
- Leopolda Gonzalez-Gonzalez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico.
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico.
| | - Larysa Paniwnyk
- Coventry University, Sonochemistry Applied Research Centre, Faculty of Health and Life Sciences, Priory Street, Coventry CV1 5FB, UK.
| |
Collapse
|