1
|
Yusefi H, Helfield B. The effect of micro-vessel viscosity on the resonance response of a two-microbubble system. ULTRASONICS 2025; 148:107558. [PMID: 39705920 DOI: 10.1016/j.ultras.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Clinical ultrasound contrast agent microbubbles remain intravascular and are between 1-8 µm in diameter, with a volume-weighted mean size of 2-3 µm. Despite their worldwide clinical utility as a diagnostic contrast agent, and their continued and ongoing success as a local therapeutic vector, the fundamental interplay between microbubbles - including bubble-bubble interaction and the effects of a neighboring viscoelastic vessel wall, remain poorly understood. In this work, we developed a finite element model to study the physics of the complex system of two different-sized bubbles (2 and 3 µm in diameter) confined within a viscoelastic vessel from a resonance response perspective (3-12 MHz). Here, we focus on the effect of micro-vessel wall viscosity on the resulting vibrational activity of the two-bubble system. The larger bubble (3 µm) was not influenced by its smaller companion bubble, and we observed a significant dampening effect across all transmit frequencies when confined within the vessel of increasing viscosity, an expected result. However, the smaller bubble (2 µm) was highly influenced by its larger neighboring bubble, including the induction of a strong low-frequency resonant response - resulting in transmit frequency windows in which its response in a lightly damped vessel far exceeded its vibration amplitude when unconfined. Further, micro-vessel wall dynamics closely mimic the frequency-dependence of the adjacent bubbles. Our findings imply that for a system of multi-bubbles within a viscoelastic vessel, the larger bubble physics dominates the system by inducing the smaller bubble and the vessel wall to follow its vibration - an effect that can be amplified within a lightly damped vessel. These findings have important implications for contrast-enhanced ultrasound imaging and therapeutic applications.
Collapse
Affiliation(s)
- Hossein Yusefi
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
2
|
Pellow C, Cherin E, Abenojar EC, Exner AA, Zheng G, Demore CEM, Goertz DE. High-Frequency Array-Based Nanobubble Nonlinear Imaging in a Phantom and In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2059-2074. [PMID: 33513102 PMCID: PMC8296974 DOI: 10.1109/tuffc.2021.3055141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.
Collapse
|
3
|
Lum JS, Daeichin V, Kienle DF, Schwartz DK, Murray TW, Borden MA. Changes in microbubble dynamics upon adhesion to a solid surface. APPLIED PHYSICS LETTERS 2020; 116:123703. [PMID: 32231399 PMCID: PMC7093207 DOI: 10.1063/1.5135017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The interaction between an acoustically driven microbubble and a surface is of interest for a variety of applications, such as ultrasound imaging and therapy. Prior investigations have mainly focused on acoustic effects of a rigid boundary, where it was generally observed that the wall increases inertia and reduces the microbubble resonance frequency. Here we investigate the response of a lipid-coated microbubble adherent to a rigid wall. Firm adhesion between the microbubble and a glass surface was achieved through either specific (biotin/avidin) or nonspecific (lipid/glass) interactions. Total internal reflection fluorescence microscopy was used to verify conditions leading to either adhesion or non-adhesion of the bubble to a glass or rigid polymer surface. Individual microbubbles were driven acoustically to sub-nanometer-scale radial oscillations using a photoacoustic technique. Remarkably, adherent microbubbles were shown to have a higher resonance frequency than non-adherent microbubbles resting against the wall. Analysis of the resonance curves indicates that adhesion stiffens the bubble by an apparent increase in the shell elasticity term and decrease in the shell viscosity. Based on these results, we conclude that surface adhesion is dominant over acoustic effects for low-amplitude microbubble oscillations.
Collapse
Affiliation(s)
- Jordan S. Lum
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | - Daniel F. Kienle
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | - Mark A. Borden
- Author to whom correspondence should be addressed:. Tel.: 303.492.7750
| |
Collapse
|
4
|
Behnia S, Yahyavi M, Habibpourbisafar R, Mottaghi F. Study of encapsulated microbubble cluster based on association schemes perspective. ULTRASONICS SONOCHEMISTRY 2019; 52:131-141. [PMID: 30477795 DOI: 10.1016/j.ultsonch.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Ultrasound contrast agents have been recently utilized in therapeutical implementations for targeted delivery of pharmaceutical substances. Radial pulsations of a cluster of encapsulated microbubbles under the action of an ultrasound field are complex and highly nonlinear, particularly for drug and gene delivery applications with high acoustic pressure amplitudes. In this paper, based on Qin-Ferrara's model (Qin and Ferrara, 2010), the complete synchronization and cluster formation in targeted microbubbles network are studied. Also, association schemes as a novel approach are suggested for finding a relationship between coupled microbubbles elements which are immersed in blood or surrounding soft tissue. A significant advantage of this method is that the stability of the synchronized state (or symmetric eigenmode of mutual bubble oscillation) with respect to another state (another eigenmode) can now predict. More interestingly, we find a significant relationship between an isolated and multiple microbubbles. The results show that the problem of studying the dynamics of encapsulated microbubble cluster at synchronization state is dependent on the dynamical characteristics of isolated cases, shell thickness, density. Also, the distance between microbubbles has an important role in their synchronous modes.
Collapse
Affiliation(s)
- S Behnia
- Department of Physics, Urmia University of Technology, Orumieh, Iran.
| | - M Yahyavi
- Department of Physics, Bilkent University, 06800 Bilkent, Ankara, Turkey.
| | | | - F Mottaghi
- Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
5
|
Helfield B. A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:282-300. [PMID: 30413335 DOI: 10.1016/j.ultrasmedbio.2018.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound contrast agent microbubbles have expanded the utility of biomedical ultrasound from anatomic imaging to the assessment of microvascular blood flow characteristics and ultrasound-assisted therapeutic applications. Central to their effectiveness in these applications is their resonant and non-linear oscillation behaviour. This article reviews the salient physics of an oscillating microbubble in an ultrasound field, with particular emphasis on phospholipid-coated agents. Both the theoretical underpinnings of bubble vibration and the experimental evidence of non-linear encapsulated bubble dynamics and scattering are discussed and placed within the context of current and emerging applications.
Collapse
Affiliation(s)
- Brandon Helfield
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Tremblay-Darveau C, Sheeran PS, Vu CK, Williams R, Zhang Z, Bruce M, Burns PN. The Role of Microbubble Echo Phase Lag in Multipulse Contrast-Enhanced Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1389-1401. [PMID: 29993575 DOI: 10.1109/tuffc.2018.2841848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we assess the importance of microbubble shell composition for contrast-enhanced imaging sequences commonly used on clinical scanners. While the gas core dynamics are primarily responsible for the nonlinear harmonic response of microbubbles at diagnostic pressures, it is now understood that the shell rheology plays a dominant role in the nonlinear response of microbubbles subjected to low acoustic pressures. Of particular interest here, acoustic pressures of tens of kilopascal can cause a reversible phase transition of the phospholipid coatings from a stiff elastic organized state to a less stiff disorganized buckled state. Such a transition from elastic to buckled shell induces a steep variation of the shell elasticity, which alters the microbubble acoustic scattering properties. We demonstrate in this paper that this mechanism plays a dominant role in contrast pulse sequences that modulate the amplitude of the insonifying pulse pressure. The contrast-to-tissue ratio (CTR) for amplitude modulation (AM), pulse inversion (PI), and amplitude modulation pulse inversion (AMPI) is measured in vitro for Definity, Sonazoid, both lipid-encapsulted microbubbles, and the albumin-coated Optison. It is found that pulse sequences using AM significantly enhanced the nonlinear response of all studied microbubbles compared to PI (up to 15 dB more) when low insonation pressures under 200 kPa were used. Further investigation reveals that the origin of the hyperechoicity is a small phase lag occurring between the echoes from the full-and half-amplitude driving pulses, and that the effect could be attributed to the shell softening dynamics of lipid and albumin coatings. We assess that this additional phase in microbubble ultrasound scattering can have a dominant role in the CTR achieved in contrast sequences using AM. We also show that the pressure dependent phase lag is a specific marker for microbubbles with no equivalent in tissue, which can be used to segment microbubbles from the tissue harmonics and significantly increase the CTR.
Collapse
|
7
|
van Rooij T, Beekers I, Lattwein KR, van der Steen AFW, de Jong N, Kooiman K. Vibrational Responses of Bound and Nonbound Targeted Lipid-Coated Single Microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:785-797. [PMID: 28287967 DOI: 10.1109/tuffc.2017.2679160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the main challenges for ultrasound molecular imaging is acoustically distinguishing nonbound microbubbles from those bound to their molecular target. In this in vitro study, we compared two types of in-house produced targeted lipid-coated microbubbles, either consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, C16:0 (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine, C18:0 (DSPC) as the main lipid, using the Brandaris 128 ultrahigh-speed camera to determine vibrational response differences between bound and nonbound biotinylated microbubbles. In contrast to previous studies that studied vibrational differences upon binding, we used a covalently bound model biomarker (i.e., streptavidin) rather than physisorption, to ensure binding of the biomarker to the membrane. The microbubbles were insonified at frequencies between 1 and 4 MHz at pressures of 50 and 150 kPa. This paper shows lower acoustic stability of bound microbubbles, of which DPPC-based microbubbles deflated most. For DPPC microbubbles with diameters between 2 and [Formula: see text] driven at 50 kPa, resonance frequencies of bound microbubbles were all higher than 1.8 MHz, whereas those of nonbound microbubbles were significantly lower. In addition, the relative radial excursions at resonance were also higher for bound DPPC microbubbles. These differences did not persist when the pressure was increased to 150 kPa, except for the acoustic stability which further decreased. No differences in resonance frequencies were observed between bound and nonbound DSPC microbubbles. Nonlinear responses in terms of emissions at the subharmonic and second harmonic frequencies were similar for bound and nonbound microbubbles at both pressures. In conclusion, we identified differences in vibrational responses of bound DPPC microbubbles with diameters between 2 and [Formula: see text] that distinguish them from nonbound ones.
Collapse
|
8
|
van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia 2015; 31:90-106. [PMID: 25707815 DOI: 10.3109/02656736.2014.997809] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ultrasound contrast agents (UCAs) are used routinely in the clinic to enhance contrast in ultrasonography. More recently, UCAs have been functionalised by conjugating ligands to their surface to target specific biomarkers of a disease or a disease process. These targeted UCAs (tUCAs) are used for a wide range of pre-clinical applications including diagnosis, monitoring of drug treatment, and therapy. In this review, recent achievements with tUCAs in the field of molecular imaging, evaluation of therapy, drug delivery, and therapeutic applications are discussed. We present the different coating materials and aspects that have to be considered when manufacturing tUCAs. Next to tUCA design and the choice of ligands for specific biomarkers, additional techniques are discussed that are applied to improve binding of the tUCAs to their target and to quantify the strength of this bond. As imaging techniques rely on the specific behaviour of tUCAs in an ultrasound field, it is crucial to understand the characteristics of both free and adhered tUCAs. To image and quantify the adhered tUCAs, the state-of-the-art techniques used for ultrasound molecular imaging and quantification are presented. This review concludes with the potential of tUCAs for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter , Erasmus MC, Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
9
|
Helfield BL, Leung BYC, Huo X, Goertz DE. Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency. ULTRASONICS 2014; 54:1419-24. [PMID: 24746478 DOI: 10.1016/j.ultras.2014.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/22/2014] [Indexed: 05/11/2023]
Abstract
Phospholipid encapsulated microbubbles are widely employed as clinical diagnostic ultrasound contrast agents in the 1-5 MHz range, and are increasingly employed at higher ultrasound transmit frequencies. The stiffness and viscosity of the encapsulating "shells" have been shown to play a central role in determining both the linear and nonlinear response of microbubbles to ultrasound. At lower frequencies, recent studies have suggested that shell properties can be frequency dependent. At present, there is only limited knowledge of how the viscoelastic properties of phospholipid shells scale at higher frequencies. In this study, four batches of in-house phospholipid encapsulated microbubbles were fabricated with decreasing volume-weighted mean diameters of 3.20, 2.07, 1.82 and 1.61 μm. Attenuation experiments were conducted in order to assess the frequency-dependent response of each batch, resulting in resonant peaks in response at 4.2, 8.9, 12.6 and 19.5 MHz, respectively. With knowledge of the size measurements, the attenuation spectra were then fitted with a standard linearized bubble model in order to estimate the microbubble shell stiffness Sp and shell viscosity Sf, resulting in a slight increase in Sp (1.53-1.76 N/m) and a substantial decrease in Sf (0.29×10(-6)-0.08×10(-6) kg/s) with increasing frequency. These results performed on a single phospholipid agent show that frequency dependent shell properties persist at high frequencies (up to 19.5MHz).
Collapse
Affiliation(s)
- B L Helfield
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Ben Y C Leung
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Xuan Huo
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - D E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Helfield BL, Leung BYC, Goertz DE. The influence of compliant boundary proximity on the fundamental and subharmonic emissions from individual microbubbles. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:EL40-6. [PMID: 24993236 DOI: 10.1121/1.4885544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The proximity of a solid-liquid boundary has been theoretically predicted to affect nonlinear microbubble emissions, but to date there has been no experimental validation of this effect. In this study, individual microbubbles (n = 15) were insonicated at f = 11 MHz as a function of offset distance from a compliant (agarose) planar boundary by employing an optical trapping apparatus. It was found that fundamental scattering increases while subharmonic scattering decreases as the microbubble approaches the boundary. Although a microbubble-boundary model can predict the qualitative trends observed for a subset of encapsulation properties, further modeling efforts are required to completely model compliant boundary-microbubble interactions.
Collapse
Affiliation(s)
- Brandon L Helfield
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada , ,
| | - Ben Y C Leung
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada , ,
| | - David E Goertz
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada , ,
| |
Collapse
|
11
|
Helfield BL, Leung BYC, Goertz DE. The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles. Phys Med Biol 2014; 59:1721-45. [DOI: 10.1088/0031-9155/59/7/1721] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Helfield BL, Goertz DE. Nonlinear resonance behavior and linear shell estimates for Definity™ and MicroMarker™ assessed with acoustic microbubble spectroscopy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1158-68. [PMID: 23363132 DOI: 10.1121/1.4774379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
There is a growing interest in microbubble based ultrasound contrast imaging applications in the 5-15 MHz range. In this study, individual microbubbles were insonified at low pressures (≤ 25 kPa) using an "acoustic spectroscopy" approach which entailed transmitting a sequence of tone bursts with center frequencies ranging from 4 to 13.5 MHz. The fundamental (transmit) frequency radial excursion amplitude was calculated from the scattered signals to produce a resonance curve for each bubble. For diameters between 2.5 to 4 μm, 69% of Target-Ready MicroMarker™ (Bracco, Geneva; Visualsonics, Canada) exhibited asymmetric resonance, characterized by a skewing of the resonance curve and indicative of nonlinear behavior. For Definity™ (Lantheus Medical Imaging, N. Billerica, MA), these responses were observed for 8% of diameters between 1.7 to 3.1 μm. For the subset of bubbles exhibiting linear, symmetric resonance curves, resonant frequencies, shell elasticity, and viscosity values were estimated. Between 10 to 12 MHz, for example, Target-Ready MicroMarker between 2.7 to 3.3 μm in diameter was resonant, where Definity was resonant between 1.7 to 2.6 μm. From 4 to 13.5 MHz, Target-Ready MicroMarker is characterized by a stiffer shell (3 < χ(0) < 5) N/m than Definity (0.5 < χ(0) < 2.5) N/m, and distinct strain-softening and shear-thinning rheological behavior. For Definity, no clear strain or shear-rate dependence of the shell properties is evident.
Collapse
Affiliation(s)
- Brandon L Helfield
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| | | |
Collapse
|