1
|
Jiang Y, Liu X, Jiang Z. From Morphology to Therapeutic Strategies: Exploring New Applications of Ultrasound for Diabetic Peripheral Neuropathy Diagnosis and Management. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2231-2245. [PMID: 39239831 DOI: 10.1002/jum.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that can result in severe lower limb pain and amputation. Early detection and treatment of DPN are vital, but this condition is often missed due to a lack of symptoms and the insensitivity of testing methods. This article reviews various ultrasound imaging modalities in the direct and indirect evaluation of peripheral neuropathy. Moreover, how ultrasound-related therapeutic strategies are playing a role in clinical treatment is discussed. Finally, the application of innovative methodologies in the diagnosis of DPN, including ultrasound attenuation, photoacoustic imaging, and artificial intelligence, is described.
Collapse
Affiliation(s)
- Yanfeng Jiang
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| | - Xiatian Liu
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| | - Zhenzhen Jiang
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
2
|
Wang J, Shi L, Wang C, Yao LH, Li G, Wang S. Astragaloside depresses compound action potential in sciatic nerve of frogs involved in L-type Ca 2+-channel dependent mechanism. Nat Prod Res 2024:1-10. [PMID: 38824425 DOI: 10.1080/14786419.2024.2353388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.
Collapse
Affiliation(s)
- Jinxiu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Lulu Shi
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chuchu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Li-Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Guoyin Li
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| |
Collapse
|
3
|
Bao SC, Li F, Xiao Y, Niu L, Zheng H. Peripheral focused ultrasound stimulation and its applications: From therapeutics to human-computer interaction. Front Neurosci 2023; 17:1115946. [PMID: 37123351 PMCID: PMC10140332 DOI: 10.3389/fnins.2023.1115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Peripheral focused ultrasound stimulation (pFUS) has gained increasing attention in the past few decades, because it can be delivered to peripheral nerves, neural endings, or sub-organs. With different stimulation parameters, ultrasound stimulation could induce different modulation effects. Depending on the transmission medium, pFUS can be classified as body-coupled US stimulation, commonly used for therapeutics or neuromodulation, or as an air-coupled contactless US haptic system, which provides sensory inputs and allows distinct human-computer interaction paradigms. Despite growing interest in pFUS, the underlying working mechanisms remain only partially understood, and many applications are still in their infancy. This review focused on existing applications, working mechanisms, the latest progress, and future directions of pFUS. In terms of therapeutics, large-sample randomized clinical trials in humans are needed to translate these state of art techniques into treatments for specific diseases. The airborne US for human-computer interaction is still in its preliminary stage, but further efforts in task-oriented US applications might provide a promising interaction tool soon.
Collapse
Affiliation(s)
- Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Hairong Zheng,
| |
Collapse
|
4
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
5
|
Bao J, Tangney T, Pilitsis JG. Focused Ultrasound for Chronic Pain. Neurosurg Clin N Am 2022; 33:331-338. [DOI: 10.1016/j.nec.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Kovalenko E, Makhnovich E, Osinovskaya N, Bogolepova A. Focused ultrasound as a non-invasive method with therapeutic potential in patients with Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:38-45. [DOI: 10.17116/jnevro202212210138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Effects of Noninvasive Low-Intensity Focus Ultrasound Neuromodulation on Spinal Cord Neurocircuits In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8534466. [PMID: 34873411 PMCID: PMC8643243 DOI: 10.1155/2021/8534466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023]
Abstract
Although neurocircuits can be activated by focused ultrasound stimulation, it is unclear whether this is also true for spinal cord neurocircuits. In this study, we used low-intensity focused ultrasound (LIFU) to stimulate lumbar 4–lumbar 5 (L4–L5) segments of the spinal cord of normal Sprague Dawley rats with a clapper. The activation of the spinal cord neurocircuits enhanced soleus muscle contraction as measured by electromyography (EMG). Neuronal activation and injury were assessed by EMG, western blotting (WB), immunofluorescence, hematoxylin and eosin (H&E) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), somatosensory evoked potentials (SEPs), motor evoked potentials (MEPs), and the Basso–Beattie–Bresnahan locomotor rating scale. When the LIFU intensity was more than 0.5 MPa, LIFU stimulation induced soleus muscle contraction and increased the EMG amplitudes (P < 0.05) and the number of c-fos- and GAD65-positive cells (P < 0.05). When the LIFU intensity was 3.0 MPa, the LIFU stimulation led to spinal cord damage and decreased SEP amplitudes for electrophysiological assessment (P < 0.05); this resulted in coagulation necrosis, structural destruction, neuronal loss in the dorsal horn by H&E and Nissl staining, and increased expression of GFAP, IL-1β, TNF-α, and caspase-3 by IHC, ELISA, and WB (P < 0.05). These results show that LIFU can activate spinal cord neurocircuits and that LIFU stimulation with an irradiation intensity ≤1.5 MPa is a safe neurostimulation method for the spinal cord.
Collapse
|
8
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
9
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
10
|
Tan JS, Lin CC, Chen GS. Vasomodulation of peripheral blood flow by focused ultrasound potentiates improvement of diabetic neuropathy. BMJ Open Diabetes Res Care 2020; 8:8/1/e001004. [PMID: 32188594 PMCID: PMC7078690 DOI: 10.1136/bmjdrc-2019-001004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Effective treatment methods for diabetic peripheral neuropathy are still lacking. Here, a focused ultrasound (FUS) technique was developed to improve blood flow in diabetic peripheral vessels and potentially treat diabetic peripheral neuropathy. RESEARCH DESIGN AND METHODS Male adult Sprague-Dawley rats at 4 weeks poststreptozotocin injections were adopted as models for diabetic neuropathic rats. For single FUS treatment, blood perfusion in the skin of the pad of the middle toe was measured before, during, and after the medial and lateral plantar arteries were treated by FUS. For multiple FUS treatments, blood perfusion measurements, von Frey and hot plate testing and nerve conduction velocity measurements were performed before ultrasonic treatment on the first day of each week, and the microvascular and neural fiber densities in the pad of the toe were measured on the first day of the last week. RESULTS The blood perfusion rate significantly increased for 7-10 min in the control and neuropathic rats after a single ultrasound exposure. Multiple ultrasound treatments compared with no treatments significantly increased blood perfusion at the second week and further enhanced perfusion at the third week in the neuropathic rats. Additionally, the paw withdrawal force and latency significantly increased from 34.33±4.55 g and 3.96±0.25 s at the first week to 39.10±5.02 g and 4.77±0.71 s at the second week and to 41.13±2.57 g and 5.24±0.86 s at the third week, respectively. The low nerve conduction velocity in the diabetic rats also improved after the ultrasound treatments. Additionally, ultrasound treatments halted the decrease in microvessel and neural fiber densities in the skin of the diabetic toes. Histologic analysis indicated no damage to the treated arteries or neighboring tissue. CONCLUSIONS FUS treatment can increase upstream arterial blood flow in diabetic feet, ameliorate the decrease in downstream microvessel perfusion and halt neuropathic progression.
Collapse
Affiliation(s)
- Joo-Shin Tan
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Gin-Shin Chen
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
11
|
Effects of external low intensity focused ultrasound on electrophysiological changes in vivo in a rodent model of common peroneal nerve injury. Neuroscience 2020; 429:264-272. [DOI: 10.1016/j.neuroscience.2020.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/28/2023]
|
12
|
Hellman A, Maietta T, Byraju K, Linda Park Y, Shao M, Liss A, Neubauer P, Burdette C, Ghoshal G, Qian J, Nalwalk J, Pilitsis JG. Low Intensity Focused Ultrasound Modulation of Vincristine Induced Neuropathy. Neuroscience 2020; 430:82-93. [DOI: 10.1016/j.neuroscience.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
|
13
|
Feng B, Chen L, Ilham SJ. A review on ultrasonic neuromodulation of the peripheral nervous system: enhanced or suppressed activities? APPLIED SCIENCES-BASEL 2019; 9. [PMID: 34113463 PMCID: PMC8188893 DOI: 10.3390/app9081637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering focused energy deep into the tissue. Low-intensity ultrasound (US) directly activates and/or inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous system (PNS) is less developed and rarely used clinically. Literature on the neuromodulatory effects of US on the PNS is controversy with some documenting enhanced neural activities, some showing suppressed activities, and others reporting mixed effects. US, with different range of intensity and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which underlies different experimental outcomes in the literature. In this review, we summarize all the major reports that documented the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal root ganglion. In particular, we thoroughly discuss the potential impacts by the following key parameters to the study outcomes of PNS neuromodulation by the US: frequency, pulse repetition frequency, duty cycle, intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies. Potential mechanisms of peripheral US neuromodulation are summarized to provide a plausible interpretation to the seemly contradictory effects of enhanced and suppressed neural activities from US neuromodulation.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Correspondence: ; Tel.: (001-860-486-6435)
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
14
|
Walling I, Panse D, Gee L, Maietta T, Kaszuba B, Kumar V, Gannon S, Hellman A, Neubauer P, Frith L, Williams E, Ghoshal G, Shin DS, Burdette C, Qian J, Pilitsis JG. The use of focused ultrasound for the treatment of cutaneous allodynia associated with chronic migraine. Brain Res 2018; 1699:135-141. [DOI: 10.1016/j.brainres.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
15
|
Ilham SJ, Chen L, Guo T, Emadi S, Hoshino K, Feng B. In vitro single-unit recordings reveal increased peripheral nerve conduction velocity by focused pulsed ultrasound. Biomed Phys Eng Express 2018; 4. [PMID: 30410792 DOI: 10.1088/2057-1976/aabef1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrasound that is widely used in medical diagnosis has drawn growing interests as a noninvasive means of neuromodulation. Focused pulsed ultrasound (FPUS) effectively modulates neural encoding and transmission in the peripheral nervous system (PNS) with unclear mechanism of action, which is further confounded by contradictory experimental outcomes from recordings of compound action potentials (CAP). To address that, we developed a novel in vitro set up to achieve simultaneous single-unit recordings from individual mouse sciatic nerve axon and systematically studied the neuromodulation effects of FPUS on individual axon. Unlike previous CAP recordings, our single-unit recordings afford superior spatial and temporal resolution to reveal the subtle but consistent effects of ultrasonic neuromodulation. Our results indicate that, 1) FPUS did not evoke action potentials directly in mouse sciatic nerve at all the tested intensities (spatial peak temporal average intensity, ISPTA of 0.91 to 28.2 W/cm2); 2) FPUS increases the nerve conduction velocity (CV) in both fast-conducting A- and slow-conducting C- type axons with effects more pronounced at increased stimulus duration and intensity; and 3) effects of increased CV is reversible and cannot be attributed to the change of local temperature. Our results support existing theories of non-thermal mechanisms underlying ultrasonic neuromodulation with low-intensity FPUS, including NICE, flexoelectricity, and solition models. This work also provides a solid experimental basis to further advance our mechanistic understandings of ultrasonic neuromodulation in the PNS.
Collapse
Affiliation(s)
- S J Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - L Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - T Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - S Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - K Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
16
|
High-Intensity Ultrasound Treatment for Vincristine-Induced Neuropathic Pain. Neurosurgery 2018; 83:1068-1075. [DOI: 10.1093/neuros/nyx488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/07/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Vincristine is a commonly used chemotherapeutic agent that results in debilitating untreatable peripheral neuropathy.
OBJECTIVE
To determine the effects of pulsed high-intensity focused ultrasound (HIFU) on sensory thresholds in a validated vincristine-induced neuropathy (VIN) rodent model.
METHODS
VIN was induced and mechanical allodynia was confirmed by nociceptive testing. von Frey fibers and Randall-Sellito test were used as measures of innocuous and noxious mechanical thresholds, respectively, and the hot plate test for thermal thresholds. Tests were performed before VIN, after 2 wk of vincristine, at 24, 48, 72, and 120 h after HIFU applied to the left L5 dorsal root ganglia at 3 Watts for 3 min. Comparisons were made between a VIN cohort who underwent HIFU, a VIN cohort who underwent sham HIFU, and naïve rodents who underwent HIFU.
RESULTS
VIN HIFU rats had significantly increased mechanical thresholds at 24 h (P < .001), 48 h (P = .008), 72 h (P = .003), and 120 h (P = .03) after treatment, when compared to pre-HIFU thresholds. Furthermore, at 24 and 48 h following treatment, VIN HIFU rats had significantly higher innocuous and noxious mechanical thresholds and thermal thresholds than VIN sham HIFU rats (P < .001). Thresholds were not altered in naïve rodents who underwent HIFU. Histological data of L5 dorsal root ganglia of VIN HIFU rats suggest that transient cellular edema resolves by 48 h.
CONCLUSION
Our data suggest that HIFU increases mechanical and thermal thresholds in VIN rodents. Whether HIFU can preclude the development of reduced thresholds in the VIN model warrants further study.
Collapse
|
17
|
Lee YF, Lin CC, Cheng JS, Chen GS. An Ultrasonic Tool for Nerve Conduction Block in Diabetic Rat Models. J Vis Exp 2017. [PMID: 29155701 DOI: 10.3791/55675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nerve conduction block with a high intensity-focused ultrasound (HIFU) transducer has been performed in normal and diabetic animal models recently. HIFU can reversibly block the conduction of peripheral nerves without damaging the nerves while using an appropriate ultrasonic parameter. Temporary and partial block of the action potentials of nerves shows that HIFU has the potential to be a useful clinical treatment for pain relief. This work demonstrates the procedures for suppressing the action potentials of neuropathic nerves in diabetic rats in vivo using an HIFU transducer. The first step is to generate adult male diabetic neuropathic rats by streptozotocin (STZ) injection. The second step is to evaluate the peripheral diabetic neuropathy in STZ-induced diabetic rats by an electronic von Frey probe and a hot plate. The final step is to record in vivo extracellular action potentials of the nerve exposed to HIFU sonication. The method showed here may benefit the study of ultrasound analgesic applications.
Collapse
Affiliation(s)
- Yee Fun Lee
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital
| | - Jung-Sung Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes
| | - Gin-Shin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes;
| |
Collapse
|
18
|
Kaye EA, Monette S, Srimathveeravalli G, Maybody M, Solomon SB, Gulati A. MRI-guided focused ultrasound ablation of lumbar medial branch nerve: Feasibility and safety study in a swine model. Int J Hyperthermia 2016; 32:786-94. [PMID: 27443328 DOI: 10.1080/02656736.2016.1197972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE About 10-40% of chronic low back pain cases involve facet joints, which are commonly treated with lumbar medial branch (MB) radiofrequency neurotomy. Magnetic resonance imaging-guided focused ultrasound (MRgFUS), a non-invasive, non-ionising ablation modality used to treat tumours, neuropathic pain and painful bone metastasis can also be used to disrupt nerve conduction. This work's purpose was to study the feasibility and safety of direct MRgFUS ablation of the lumbar MB nerve in acute and subacute swine models. MATERIALS AND METHODS In vivo MRgFUS ablation was performed in six swine (three acute and three subacute) using a clinical MRgFUS system and a 3-T MRI scanner combination. Behavioural assessment was performed, and imaging and histology were used to assess the treatment. RESULTS AND CONCLUSIONS Histological analysis of the in vivo studies confirmed thermal necrosis of the MB nerve could be achieved without damaging the spinal cord or adjacent nerve roots. MRgFUS did not cause changes in the animals' behaviour or ambulation.
Collapse
Affiliation(s)
- Elena A Kaye
- a Department of Medical Physics , Memorial Sloan Kettering Cancer Center , New York
| | - Sebastien Monette
- b Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center , Rockefeller University, Weill Cornell Medical College , New York
| | | | - Majid Maybody
- c Department of Radiology , Memorial Sloan Kettering Cancer Center , New York
| | - Stephen B Solomon
- c Department of Radiology , Memorial Sloan Kettering Cancer Center , New York
| | - Amitabh Gulati
- d Department of Anesthesiology , Memorial Sloan Kettering Cancer Center , New York , USA
| |
Collapse
|
19
|
Galkin MV. [The use of transcranial focused ultrasound in CNS diseases]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 80:108-118. [PMID: 27331236 DOI: 10.17116/neiro2016802108-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcranial focused ultrasound is a modern medical technique, which provides non-invasive impact on the brain. Current development stage of this technique is no longer than 20 years and many possible applications of this technique are still at pre-clinical stage. The greatest progress has been made in the field of functional neurosurgery. Focused ultrasound enables non-invasive MRI-guided formation of small destruction foci in the relevant targets, providing therapeutic neuromodulating effects in patients with Parkinson's disease, essential tremor, pain syndromes, obsessive-compulsive disorders, and other diseases. So far, this treatment was carried out in more than 300 patients. Several cases of ultrasound thermal destruction of intracranial neoplasms were published. There are attempts to perform third ventriculostomy using ultrasound in animals. A separate area focuses on the enhancement of the permeability of the blood-brain barrier to various substances driven by focused ultrasound. The possibilities of enhancing the permeability to chemotherapeutic agents, immune drugs, and other substances are being investigated in laboratories. A large number of studies focus on treatment of Alzheimer's disease. clinical trials aimed at enhancing the permeability of the blood-brain barrier to chemotherapeutic agents have been initiated. Reversible neuromodulating, stimulating, and inhibiting effect of focused ultrasound on the nervous system structures is another non-destructive effect, which is currently being actively investigated in animals. Furthermore, laboratory studies demonstrated the ability of focused ultrasound to destroy blood clots and thrombi. Transcranial focused ultrasound provides numerous unique possibilities for scientific and practical medicine. Large-scale research is required prior to the widespread clinical implementation. Nevertheless, we can already state that implementation of this technique will significantly enhance diagnostic and therapeutic potential of neurosurgery and neurology.
Collapse
Affiliation(s)
- M V Galkin
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
20
|
Huisman M, Staruch RM, Ladouceur-Wodzak M, van den Bosch MA, Burns DK, Chhabra A, Chopra R. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model. PLoS One 2015; 10:e0144742. [PMID: 26659073 PMCID: PMC4682836 DOI: 10.1371/journal.pone.0144742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. METHODS Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160-300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson's trichrome and toluidine blue staining. RESULTS All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. CONCLUSION Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection.
Collapse
Affiliation(s)
- Merel Huisman
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, United States of America
| | | | | | - Dennis K. Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bazzocchi A, Napoli A, Sacconi B, Battista G, Guglielmi G, Catalano C, Albisinni U. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics. Br J Radiol 2015; 89:20150358. [PMID: 26607640 DOI: 10.1259/bjr.20150358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences.
Collapse
Affiliation(s)
- Alberto Bazzocchi
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| | - Alessandro Napoli
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Beatrice Sacconi
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Giuseppe Battista
- 3 Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Giuseppe Guglielmi
- 4 Department of Radiology, University of Foggia, Foggia, Italy.,5 Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | - Carlo Catalano
- 2 Department of Radiology, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Ugo Albisinni
- 1 Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
22
|
Brown MRD, Farquhar-Smith P, Williams JE, ter Haar G, deSouza NM. The use of high-intensity focused ultrasound as a novel treatment for painful conditions-a description and narrative review of the literature. Br J Anaesth 2015; 115:520-30. [PMID: 26385662 DOI: 10.1093/bja/aev302] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive technique that allows a small, well-circumscribed thermal lesion to be generated within a tissue target. Tissue destruction occurs due to direct heating within the lesion and the mechanical effects of acoustic cavitation. HIFU has been used in a broad range of clinical applications, including the treatment of malignancies, uterine fibroids and cardiac arrhythmias. Interest in the use of the technique to treat pain has recently increased. A number of painful conditions have been successfully treated, including musculoskeletal degeneration, bone metastases and neuropathic pain. The exact mechanism by which HIFU results in analgesia remains poorly understood, but it is thought to be due to localised denervation of tissue targets and/or neuromodulatory effects. The majority of studies conducted investigating the use of HIFU in pain are still at an early stage, although initial results are encouraging. Further research is indicated to improve our understanding of the mechanisms underlying this treatment and to fully establish its efficacy; however, it is likely that HIFU will play a role in pain management in the future. This narrative review provides a synthesis of the recent, salient clinical and basic science research related to this topic and gives a general introduction to the mechanisms by which HIFU exerts its effects.
Collapse
Affiliation(s)
- M R D Brown
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - J E Williams
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - G ter Haar
- Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - N M deSouza
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
23
|
Kaye EA, Gutta NB, Monette S, Gulati A, Loh J, Srimathveeravalli G, Ezell PC, Erinjeri JP, Solomon SB, Maybody M. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results. Cardiovasc Intervent Radiol 2015; 38:985-92. [PMID: 26040256 DOI: 10.1007/s00270-015-1141-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/21/2015] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Spastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system. METHODS The HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging. RESULTS Reddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8-64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7-34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average. CONCLUSION The acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.
Collapse
Affiliation(s)
- Elena A Kaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca (2+) -Dependent Mechanisms. Neural Plast 2015; 2015:927817. [PMID: 26078886 PMCID: PMC4452462 DOI: 10.1155/2015/927817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023] Open
Abstract
Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism.
Collapse
|