1
|
Wang R, Chen X, Zha D. Long-pulsed ultrasound-mediated microbubble thrombolysis in a rat model of microvascular obstruction. Open Med (Wars) 2024; 19:20240935. [PMID: 38584836 PMCID: PMC10997007 DOI: 10.1515/med-2024-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
In up to 30% patients who experience acute myocardial infarction, successful recanalization of the epicardial coronary artery cannot provide adequate microvascular reperfusion. In this study, we sought to determine whether long-pulsed ultrasound (US)-mediated microbubble (MB) cavitation was useful for the treatment of microvascular obstruction, and the therapeutic effects were compared within different long-pulse-length and short-pulsed US. Microvascular obstruction model was established by injecting micro-thrombi into common iliac artery of a rat's hind limb. About 1 MHz US with different long pulse lengths (ranging from 100 to 50,000 cycles) was delivered, compared to short pulse (5 cycles). The control group was given MB only without therapeutic US. Contrast perfusion images were performed at baseline, emboli, and 1, 5, 10 min post-embolization, and peak plateau video intensity (A) was obtained to evaluate the therapeutic effects. Long-tone-burst US showed better thrombolytic effects than short-pulsed US (1,000, 5,000 cycles >500 cycles, >5 cycles, and control) (P < 0.01). 1,000 cycles group showed the optimal thrombolytic effect, but microvascular hemorrhage was observed in 50,000 cycles group. In conclusion, long-tone-burst US-enhanced MB therapy mediated successful thrombolysis and may offer a powerful approach for the treatment for microvascular obstruction within a certain pulse length.
Collapse
Affiliation(s)
- Rui Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Ultrasound, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Avenue, Guangzhou, Guangdong, China
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhou S, Li J, Chen X, Huang B, Lu D, Zhang T. Mediation of long-pulsed ultrasound enhanced microbubble recombinant tissue plasminogen activator thrombolysis in a rat model of platelet-rich thrombus. Cardiovasc Diagn Ther 2024; 14:51-58. [PMID: 38434566 PMCID: PMC10904306 DOI: 10.21037/cdt-23-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024]
Abstract
Background Ultrasound (US)-enhanced microbubble (MB) therapy has been investigated as a therapeutic technique to facilitate the thrombolysis for the treatment of pericardial and microvascular obstruction. This study sought to assess the therapeutic effects of long-pulsed US-assisted MB-mediated recombinant tissue plasminogen activator (rt-PA) thrombolysis in a rat model of platelet-rich thrombus. Methods Ferric chloride (10%) was used to induce total arterial occlusion before formation of platelet-rich thrombi. Therapeutic long-tone-burst US (1 MHz, 0.6 MPa, 1,000-µs pulse length) was used, and 2.9×109/mL of lipid MBs and 1 mg/mL of rt-PA were infused. Subsequently, 42 Sprague-Dawley (SD) male rats were randomly divided into seven groups: (I) control; (II) rt-PA; (III) high duty cycle US + MB; (IV) low duty cycle US + rt-PA; (V) high duty cycle US + rt-PA; (VI) low duty cycle US + rt-PA + MB; and (VII) high duty cycle US + rt-PA + MB. The recanalization grades were evaluated after 20 minutes' treatment. Results Compared to the control, there was significant improvement in recanalization in the US + rt-PA groups (P=0.01 vs. control), US (low duty cycle) + rt-PA + MB (P=0.003 vs. control) and US (high duty cycle) + rt-PA + MB (P<0.001 vs. control) groups, in which recanalization was successfully achieved in all rats. Conclusions Long-pulsed US-enhanced MB-mediated rt-PA thrombolysis offered a powerful approach in the treatment of platelet-rich thrombus.
Collapse
Affiliation(s)
- Shuxuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
- Cardiovascular Center, Hospital of Changan Dongguan, Dongguan, China
| | - Jinhua Li
- Department of Ultrasound, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bihan Huang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Mondou P, Mériaux S, Nageotte F, Vappou J, Novell A, Larrat B. State of the art on microbubble cavitation monitoring and feedback control for blood-brain-barrier opening using focused ultrasound. Phys Med Biol 2023; 68:18TR03. [PMID: 37369229 DOI: 10.1088/1361-6560/ace23e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive and highly promising method for targeted and reversible blood-brain barrier permeabilization. Numerous preclinical studies aim to optimize the localized delivery of drugs using this method in rodents and non-human primates. Several clinical trials have been initiated to treat various brain diseases in humans using simultaneous BBB permeabilization and drug injection. This review presents the state of the art ofin vitroandin vivocavitation control algorithms for BBB permeabilization using microbubbles (MB) and FUS. Firstly, we describe the different cavitation states, their physical significance in terms of MB behavior and their translation into the spectral composition of the backscattered signal. Next, we report the different indexes calculated and used during the ultrasonic monitoring of cavitation. Finally, the differentin vitroandin vivocavitation control strategies described in the literature are presented and compared.
Collapse
Affiliation(s)
- Paul Mondou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Sébastien Mériaux
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Florent Nageotte
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, 91401 , Orsay, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Chen X, Chen X, Wang J, Yu FTH, Villanueva FS, Pacella JJ. Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:996-1006. [PMID: 36697268 PMCID: PMC9974862 DOI: 10.1016/j.ultrasmedbio.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Ultrasound (US)-targeted microbubble (MB) cavitation (UTMC)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. Because of the potentially longer circulation time and relative ease of storage and reconstitution of polymer-shelled MBs compared with lipid MBs, we investigated the dynamic behavior of polymer microbubbles and their therapeutic potential for sonoreperfusion (SRP) therapy. METHODS The fate of polymer MBs during a single long tone-burst exposure (1 MHz, 5 ms) at various acoustic pressures and MB concentrations was recorded via high-speed microscopy and passive cavitation detection (PCD). SRP efficacy of the polymer MBs was investigated in an in vitro flow system and compared with that of lipid MBs. DISCUSSION Microscopy videos indicated that polymer MBs formed gas-filled clusters that continued to oscillate, fragment and form new gas-filled clusters during the single US burst. PCD confirmed continued acoustic activity throughout the 5-ms US excitation. SRP efficacy with polymer MBs increased with pulse duration and acoustic pressure similarly to that with lipid MBs but no significant differences were found between polymer and lipid MBs. CONCLUSION These data suggest that persistent cavitation activity from polymer MBs during long tone-burst US excitation confers excellent reperfusion efficacy.
Collapse
Affiliation(s)
- Xianghui Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
7
|
Yu FTH, Amjad MW, Mohammed SA, Yu GZ, Chen X, Pacella JJ. Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:152-164. [PMID: 36253230 PMCID: PMC9712163 DOI: 10.1016/j.ultrasmedbio.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, long- and short-pulse ultrasound (US)-targeted microbubble cavitation (UTMC) has been found to increase perfusion in healthy and ischemic skeletal muscle, in pre-clinical animal models of microvascular obstruction and in the myocardium of patients presenting with acute myocardial infarction. There is evidence that the observed microvascular vasodilation is driven by the nitric oxide pathway and purinergic signaling, but the time course of the response and the dependency on US pulse length are not well elucidated. Because our prior data supported that sonoreperfusion efficacy is enhanced by long-pulse US versus short-pulse US, in this study, we sought to compare long-pulse (5000 cycles) and short-pulse (500 × 10 cycles) US at a pressure of 1.5 MPa with an equivalent total number of acoustical cycles, hence constant acoustic energy, and at the same frequency (1 MHz), in a rodent hind limb model with and without microvascular obstruction (MVO). In quantifying perfusion using burst replenishment contrast-enhanced US imaging, we made three findings: (i) Long and short pulses result in different vasodilation kinetics in an intact hind limb model. The long pulse causes an initial spasmic reduction in flow that spontaneously resolved at 4 min, followed by sustained higher flow rates (approximately twofold) compared with baseline, starting 10 min after therapy (p < 0.05). The short pulse caused a short-lived approximately twofold increase in flow rate that peaked at 4 min (p < 0.05), but without the initial spasm. (ii) The sustained increased response with the long pulse is not simply reactive hyperemia. (iii) Both pulses are effective in reperfusion of MVO in our hindlimb model by restoring blood volume, but only the long pulse caused an increase in flow rate after treatment ii, compared with MVO (p < 0.05). Histological analysis of hind limb muscle post-UTMC with either pulse configuration indicates no evidence of tissue damage or hemorrhage. Our findings indicate that the microbubble oscillation induces vasodilation, and therapeutic efficacy for the treatment of MVO can be tuned by varying pulse length; relative to short-pulse US, longer pulses drive greater microbubble cavitation and more rapid microvascular flow rate restoration after MVO, warranting further optimization of the pulse length for sonoreperfusion therapy.
Collapse
Affiliation(s)
- François T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
9
|
Qiu S, Li D, Wang Y, Xiu J, Lyu C, Kutty S, Zha D, Wu J. Ultrasound-Mediated Microbubble Cavitation Transiently Reverses Acute Hindlimb Tissue Ischemia through Augmentation of Microcirculation Perfusion via the eNOS/NO Pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1014-1023. [PMID: 33487472 DOI: 10.1016/j.ultrasmedbio.2020.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Ultrasound-mediated microbubble cavitation improves perfusion in chronic limb and myocardial ischemia. The purpose of this study was to determine the effects of ultrasound-mediated microbubble cavitation in acute limb ischemia and investigate the mechanism of action. The animal with acute hindlimb ischemia was established using male Sprague-Dawley rats. The rats were randomly divided into three groups: intermittent high-mechanical-index ultrasound pulses combined with microbubbles (ultrasound [US] + MB group), US alone (US group) and MB alone (MB group). Both hindlimbs were treated for 10 min. Contrast ultrasound perfusion imaging of both hindlimbs was performed immediately and 5, 10, 15, 20 and 25 min after treatment. The role of the nitric oxide (NO) pathway in increasing blood flow in acutely ischemic tissue was evaluated by inhibiting endothelial nitric oxide synthase (eNOS) with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME). In the US + MB group, microvascular blood volume and microvascular blood flow of the ischemic hindlimb were significantly increased after treatment (both p values <0.05), while the microvascular flux rate (β) increased, but not significantly (p > 0.05). The increases were observed immediately after treatment, and had dissipated by 25 min. Changes in the US and MB groups were minimal. Inhibitory studies indicated cavitation increased phospho-eNOS concentration in ischemic hindlimb muscle tissue, and the increase was significantly inhibited by L-NAME (p < 0.05). Ultrasound-mediated microbubble cavitation transiently increases local perfusion in acutely ischemic tissue, mainly by improving microcirculatory perfusion. The eNOS/NO signaling pathway appears to be an important mediator of the effect.
Collapse
Affiliation(s)
- Shifeng Qiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danxia Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuegang Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuangye Lyu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shelby Kutty
- Helen B. Taussig Heart Center, Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland, USA
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Lafond M, Salido NG, Haworth KJ, Hannah AS, Macke GP, Genstler C, Holland CK. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:693-709. [PMID: 33349516 PMCID: PMC11537209 DOI: 10.1016/j.ultrasmedbio.2020.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The EkoSonic endovascular system has been cleared by the U.S. Food and Drug Administration for the controlled and selective infusion of physician specified fluids, including thrombolytics, into the peripheral vasculature and the pulmonary arteries. The objective of this study was to explore whether this catheter technology could sustain cavitation nucleated by infused Definity, to support subsequent studies of ultrasound-mediated drug delivery to diseased arteries. The concentration and attenuation spectroscopy of Definity were assayed before and after infusion at 0.3, 2.0 and 4.0 mL/min through the EkoSonic catheter. PCI was used to map and quantify stable and inertial cavitation as a function of Definity concentration in a flow phantom mimicking the porcine femoral artery. The 2.0 mL/min infusion rate yielded the highest surviving Definity concentration and acoustic attenuation. Cavitation was sustained throughout each 15 ms ultrasound pulse, as well as throughout the 3 min infusion. These results demonstrate a potential pathway to use cavitation nucleation to promote drug delivery with the EkoSonic endovascular system.
Collapse
Affiliation(s)
- Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Nuria G Salido
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Gregory P Macke
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
12
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Istvanic F, Yu GZ, Yu FTH, Powers J, Chen X, Pacella JJ. Sonoreperfusion therapy for microvascular obstruction: A step toward clinical translation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:712-720. [PMID: 31924423 PMCID: PMC7010545 DOI: 10.1016/j.ultrasmedbio.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Sonoreperfusion therapy is being developed as an intervention for the treatment of microvascular obstruction. We investigated the reperfusion efficacy of two clinical ultrasound systems (a modified Philips EPIQ and a Philips Sonos 7500) in a rat hindlimb microvascular obstruction model. Four ultrasound conditions were tested using 20 min treatments: Sonos single frame, Sonos multi-frame, EPIQ low pressure and EPIQ high pressure. Contrast-enhanced perfusion imaging of the microvasculature was conducted at baseline and after treatment to calculate microvascular blood volume (MBV). EPIQ high pressure treatment resulted in significant recovery of MBV from microvascular obstruction, returning to baseline levels after treatment. EPIQ low pressure and Sonos multi-frame treatment resulted in significantly improved MBV after treatment but below baseline levels. Sonos single-frame and control groups showed no improvement post-treatment. This study demonstrates that the most effective sonoreperfusion therapy occurs at high acoustic pressure coupled with high acoustic intensity. Moreover, a clinically available ultrasound system is readily capable of delivering these effective therapeutic pulses.
Collapse
Affiliation(s)
- Filip Istvanic
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Microbubble Theranostic Laboratory, Department of Radiology, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Jeff Powers
- Philips Ultrasound, Bothell, Washington, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Diagnostic Ultrasound and Microbubbles Treatment Improves Outcomes of Coronary No-Reflow in Canine Models by Sonothrombolysis. Crit Care Med 2019; 46:e912-e920. [PMID: 29965834 PMCID: PMC6110622 DOI: 10.1097/ccm.0000000000003255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: Effective treatment for microvascular thrombosis-induced coronary no-reflow remains an unmet clinical need. This study sought to evaluate whether diagnostic ultrasound and microbubbles treatment could improve outcomes of coronary no-reflow by dissolving platelet- and erythrocyte-rich microthrombi. Design: Randomized controlled laboratory investigation. Setting: Research laboratory. Subjects: Mongrel dogs. Interventions: Coronary no-reflow models induced by platelet- or erythrocyte-rich microthrombi were established and randomly assigned to control, ultrasound, recombinant tissue-type plasminogen activator, ultrasound + microbubbles, or ultrasound + microbubbles + recombinant tissue-type plasminogen activator group. All treatments lasted for 30 minutes. Measurements and Main Results: Percentage of microemboli-obstructed coronary arterioles was lower in ultrasound + microbubbles group than that in control group for platelet- (> 50% obstruction: 10.20% ± 3.56% vs 31.80% ± 3.96%; < 50% obstruction: 14.80% ± 4.15% vs 28.20% ± 3.56%) and erythrocyte-rich microthrombi (> 50% obstruction: 8.20% ± 3.11% vs 30.60% ± 4.83%; < 50% obstruction: 12.80% ± 4.15% vs 25.80% ± 3.70%) (p < 0.001). Percentage change of myocardial blood flow in left anterior descending artery-dominated region, left ventricular ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles group than that in control group for both types of microthrombi (p < 0.001). Percentage change of myocardial blood flow, ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles and ultrasound + microbubbles + recombinant tissue-type plasminogen activator groups than that in recombinant tissue-type plasminogen activator group for platelet-rich microthrombi (p < 0.05). Conclusions: Ultrasound + microbubbles treatment could dissolve platelet- and erythrocyte-rich microthrombi, thereby improving outcomes of coronary no-reflow, making it a promising supplement to current reperfusion therapy for acute ST-segment elevation myocardial infarction.
Collapse
|
15
|
Shekhar H, Kleven RT, Peng T, Palaniappan A, Karani KB, Huang S, McPherson DD, Holland CK. In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Sci Rep 2019; 9:9902. [PMID: 31289285 PMCID: PMC6616381 DOI: 10.1038/s41598-019-46112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
The development of adjuvant techniques to improve thrombolytic efficacy is important for advancing ischemic stroke therapy. We characterized octafluoropropane and recombinant tissue plasminogen activator (rt-PA)-loaded echogenic liposomes (OFP t-ELIP) using differential interference and fluorescence microscopy, attenuation spectroscopy, and electrozone sensing. The loading of rt-PA in OFP t-ELIP was assessed using spectrophotometry. Further, it was tested whether the agent shields rt-PA against degradation by plasminogen activator inhibitor-1 (PAI-1). An in vitro system was used to assess whether ultrasound (US) combined with either Definity or OFP t-ELIP enhances rt-PA thrombolysis. Human whole blood clots were mounted in a flow system and visualized using an inverted microscope. The perfusate consisted of either (1) plasma alone, (2) rt-PA, (3) OFP t-ELIP, (4) rt-PA and US, (5) OFP t-ELIP and US, (6) Definity and US, or (7) rt-PA, Definity, and US (n = 16 clots per group). An intermittent US insonation scheme was employed (220 kHz frequency, and 0.44 MPa peak-to-peak pressures) for 30 min. Microscopic imaging revealed that OFP t-ELIP included a variety of structures such as liposomes (with and without gas) and lipid-shelled microbubbles. OFP t-ELIP preserved up to 76% of rt-PA activity in the presence of PAI-1, whereas only 24% activity was preserved for unencapsulated rt-PA. The use of US with rt-PA and Definity enhanced lytic efficacy (p < 0.05) relative to rt-PA alone. US combined with OFP t-ELIP enhanced lysis over OFP t-ELIP alone (p < 0.01). These results demonstrate that ultrasound combined with Definity or OFP t-ELIP can enhance the lytic activity relative to rt-PA or OFP t-ELIP alone, respectively.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.
| | - Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Arunkumar Palaniappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kunal B Karani
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
16
|
Zhu YI, Yoon H, Zhao AX, Emelianov SY. Leveraging the Imaging Transmit Pulse to Manipulate Phase-Change Nanodroplets for Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:692-700. [PMID: 30703017 PMCID: PMC6545583 DOI: 10.1109/tuffc.2019.2895248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phase-change perfluorohexane nanodroplets (PFHnDs) are a new class of recondensable submicrometer-sized contrast agents that have potential for contrast-enhanced and super-resolution ultrasound imaging with an ability to reach extravascular targets. The PFHnDs can be optically triggered to undergo vaporization, resulting in spatially stationary, temporally transient microbubbles. The vaporized PFHnDs are hyperechoic in ultrasound imaging for several to hundreds of milliseconds before recondensing to their native, hypoechoic, liquid nanodroplet state. The decay of echogenicity, i.e., the dynamic behavior of the ultrasound signal from optically triggered PFHnDs in ultrasound imaging, can be captured using high-frame-rate ultrasound imaging. We explore the possibility to manipulate the echogenicity dynamics of optically triggered PFHnDs in ultrasound imaging by changing the phase of the ultrasound imaging pulse. Specifically, the ultrasound imaging system was programmed to transmit two imaging pulses with inverse polarities. We show that the imaging pulse phase can affect the amplitude and the temporal behavior of PFHnD echogenicity in ultrasound imaging. The results of this study demonstrate that the ultrasound echogenicity is significantly increased (about 78% improvement) and the hyperechoic timespan of optically triggered PFHnDs is significantly longer (about four times) if the nanodroplets are imaged by an ultrasound pulse starting with rarefactional pressure versus a pulse starting with compressional pressure. Our finding has direct and significant implications for contrast-enhanced ultrasound imaging of droplets in applications such as super-resolution imaging and molecular imaging where detection of individual or low-concentration PFHnDs is required.
Collapse
|
17
|
Stable cavitation using acoustic phase-change dodecafluoropentane nanoparticles for coronary micro-circulation thrombolysis. Int J Cardiol 2018; 272:1-6. [PMID: 29903516 DOI: 10.1016/j.ijcard.2018.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The thrombolysis in micro-circulation after acute myocardial infarction has been an unsolved issue, as elimination effect of acute thrombolysis and primary intervention were unsatisfied. Stable cavitation using acoustic phase-change nanoparticles may have potential for thrombolysis. Therefore, we sought to investigate a novel treatment method with dodecafluoropentane (DDFP) nanoparticles for rapid and effective thrombolysis in an in-vitro artificial vascular system, as a mimicking preparation of coronary circulation. METHODS To simulate thrombus embolism in coronary circulation, an in-vitro artificial vascular system was established with cavitation effect using DDFP nanoparticles. For PBS blank control (group A), SonoVue microbubbles (group B) and DDFP nanoparticles (group C), the durations for cavitation effect were recorded and the thrombolysis efficiency with low intensity focused ultrasound irradiation in the in-vitro vascular system were analyzed with weight loss and pathological changes of thrombus before and after thrombolysis. RESULTS The optimal conditions for acoustic cavitation effect were power of 6 W for 20 min by ultrasound irradiation at 37 °C. The weight loss and weight loss rates of thrombus in group C (189.4 ± 30.2 mg and 34.2 ± 5.7%) were higher than those in group A (30.2 ± 16.0 mg and 5.2 ± 2.1%) and group B (84.0 ± 20.4 mg and 14.6 ± 1.5%) (P < 0.01, all). The duration for cavitation effect in group C (32.8 ± 3.9 min) was also longer than those in group A (0.0 ± 0.0 min) and group B (5.3 ± 0.3 min) (P < 0.01, all). CONCLUSIONS By stable and sustaining cavitation in targeted area, DDFP nanoparticles with ultrasound irradiation have significantly increased the thrombolysis efficiency, which has provided a powerful experimental foundation for potential coronary thrombolysis.
Collapse
|