1
|
Huber MT, Bradway DP, McNally PJ, Ellestad SC, Trahey GE. In Vivo Demonstration of a Real-Time Temporal SNR Acoustic Output Adjustment Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:960-971. [PMID: 38758627 PMCID: PMC11637505 DOI: 10.1109/tuffc.2024.3402530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
This work proposes a novel method of temporal signal-to-noise ratio (SNR)-guided adaptive acoustic output adjustment and demonstrates this approach during in vivo fetal imaging. Acoustic output adjustment is currently the responsibility of sonographers, but ultrasound safety studies show recommended as low as reasonably achievable (ALARA) practices are inconsistently followed. This study explores an automated ALARA method that adjusts the mechanical index (MI) output, targeting imaging conditions matching the temporal noise perception threshold. A 28-dB threshold SNR is used as the target SNR, following prior work showing relevant noise quantities are imperceptible once this image data quality level is reached. After implementing adaptive output adjustment on a clinical system, the average MI required to achieve 28-dB SNR in an 11-volunteer fetal abdomen imaging test ranged from 0.17 to 0.26. The higher MI levels were required when imaging at higher frequencies. During tests with 20-s MI adjustment imaging periods, the degree of motion impacted the adaptive performance. For stationary imaging views, target SNR levels were maintained in 90% of SNR evaluations. When scanning between targets the imaging conditions were more variable, but the target SNR was still maintained in 71% of the evaluations. Given the relatively low MI recommended when performing MI adjustment and the successful adjustment of MI in response to changing imaging conditions, these results encourage adoption of adaptive acoustic output approaches guided by temporal SNR.
Collapse
Affiliation(s)
- Matthew T. Huber
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David P. Bradway
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patricia J. McNally
- Department of Women’s and Children’s Services, Duke University Hospital, Durham, NC, USA
| | - Sarah C. Ellestad
- Division of Maternal-Fetal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gregg E. Trahey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Huber MT, Flint KM, McNally PJ, Ellestad SC, Trahey GE. Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications. ULTRASONIC IMAGING 2024; 46:151-163. [PMID: 38497455 PMCID: PMC11619465 DOI: 10.1177/01617346241236160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This work measures temporal signal-to-noise ratio (SNR) thresholds that indicate when random noise during ultrasound scanning becomes imperceptible to expert human observers. Visible noise compromises image quality and can potentially lead to non-diagnostic scans. Noise can arise from both stable acoustic sources (clutter) or randomly varying electronic sources (temporal noise). Extensive engineering effort has focused on decreasing noise in both of these categories. In this work, an observer study with five practicing sonographers was performed to assess sonographer sensitivity to temporal noise in ultrasound cine clips. Understanding the conditions where temporal noise is no longer visible during ultrasound imaging can inform engineering efforts seeking to minimize the impact this noise has on image quality. The sonographers were presented with paired temporal noise-free and noise-added simulated speckle cine clips and asked to select the noise-added clips. The degree of motion in the imaging target was found to have a significant effect on the SNR levels where noise was perceived, while changing imaging frequency had little impact. At realistic in vivo motion levels, temporal noise was not perceived in cine clips at and above 28 dB SNR. In a case study presented here, the potential of adaptive intensity adjustment based on this noise perception threshold is validated in a fetal imaging scenario. This study demonstrates how noise perception thresholds can be applied to help design or tune ultrasound systems for different imaging tasks and noise conditions.
Collapse
Affiliation(s)
- Matthew T. Huber
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Katelyn M. Flint
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patricia J. McNally
- Department of Women’s and Children’s Services, Duke University Hospital, Durham, NC, USA
| | - Sarah C. Ellestad
- Division of Maternal-Fetal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gregg E. Trahey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Fournier L, Abioui-Mourgues M, Chabouh G, Aid R, Taille TDL, Couture O, Vivien D, Orset C, Chauvierre C. rtPA-loaded fucoidan polymer microbubbles for the targeted treatment of stroke. Biomaterials 2023; 303:122385. [PMID: 37952499 DOI: 10.1016/j.biomaterials.2023.122385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Systemic injection of thrombolytic drugs is the gold standard treatment for non-invasive blood clot resolution. The most serious risks associated with the intravenous injection of tissue plasminogen activator-like proteins are the bleeding complication and the dose related neurotoxicity. Indeed, the drug has to be injected in high concentrations due to its short half-life, the presence of its natural blood inhibitor (PAI-1) and the fast hepatic clearance (0.9 mg/kg in humans, 10 mg/kg in mouse models). Overall, there is a serious need for a dose-reduced targeted treatment to overcome these issues. We present in this article a new acoustic cavitation-based method for polymer MBs synthesis, three times faster than current hydrodynamic-cavitation method. The generated MBs are ultrasound responsive, stable and biocompatible. Their functionalization enabled the efficient and targeted treatment of stroke, without side effects. The stabilizing shell of the MBs is composed of Poly-Isobutyl Cyanoacrylate (PIBCA), copolymerized with fucoidan. Widely studied for its targeting properties, fucoidan exhibit a nanomolar affinity for activated endothelium and activated platelets (P-selectins). Secondly, the thrombolytic agent (rtPA) was loaded onto microbubbles (MBs) with a simple adsorption protocol. Hence, the present study validated the in vivo efficiency of rtPA-loaded Fuco MBs to be over 50 % more efficient than regular free rtPA injection for stroke resolution. In addition, the relative injected rtPA grafted onto targeting MBs was 1/10th of the standard effective dose (1 mg/kg in mouse). As a result, no hemorrhagic event, BBB leakage nor unexpected tissue distribution were observed.
Collapse
Affiliation(s)
- Louise Fournier
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Myriam Abioui-Mourgues
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Georges Chabouh
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Rachida Aid
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Université Paris Cité, UMS 34, Fédération de Recherche en Imagerie Multi-modalité (FRIM), F-75018, Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Cyrille Orset
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
4
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
5
|
Abiteboul R, Ilovitsh T. Optimized Simultaneous Axial Multifocal Imaging via Frequency Multiplexed Focusing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2930-2942. [PMID: 35984787 DOI: 10.1109/tuffc.2022.3200468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneous axial multifocal imaging (SAMI) using a single acoustical transmission was developed to enhance the depth of field. This technique transmits a superposition of axial multifoci waveforms in a single transmission, thus increasing the frame rate. However, since all the waveforms are transmitted at a constant center frequency, there is a tradeoff between attenuation and lateral resolution when choosing a constant frequency for all the axial depths. In this work, we developed an optimized SAMI method by adding frequency dependence to each axial multifocus. By gradually increasing the frequency as a function of the focal depth, this method makes it possible to compensate for the gradually increasing F-number in order to achieve constant lateral resolution across the entire field of view. Alternatively, by gradually decreasing the axial multifoci frequencies as a function of depth, enhanced penetration depth and contrast are obtained. This method, termed frequency multiplexed SAMI (FM-SAMI), is described analytically and validated by resolution and contrast experiments performed on resolution targets, tissue-mimicking phantoms, and ex vivo biological samples. This is the first real-time implementation of a frequency multiplexing approach for axial multifoci imaging that facilitates high-quality imaging at an increased frame rate.
Collapse
|
6
|
Lyo S, Tierradentro-Garcia LO, Viaene AN, Hwang M. High-resolution neurosonographic examination of the lenticulostriate vessels in neonates with hypoxic-ischemic encephalopathy. Br J Radiol 2022; 95:20211141. [PMID: 35604651 PMCID: PMC10996316 DOI: 10.1259/bjr.20211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the feasibility of visualizing lenticulostriate vessels (LV) using a linear high-resolution ultrasound probe and characterize LV morphology to determine whether morphological alterations in LV are present in neonatal hypoxic-ischemic encephalopathy (HIE) as compared to the unaffected infants. METHODS We characterized LV by their echogenicity, width, length, tortuosity, and numbers of visualized stems/branches in neurosonographic examinations of 80 neonates. Our population included 45 unaffected (non-HIE) and 35 with clinical and/or imaging diagnosis of HIE. Of the neonates with clinical diagnosis of HIE, 16 had positive MRI findings for HIE (HIE+MRI) and 19 had negative MRI findings (HIE-MRI). Annotations were performed twice with shuffled data sets at a 1-month interval and intrarater reliability was assessed. Focused comparison was conducted between non-HIE, HIE+MRI and HIE-MRI neonates whose images were acquired with a high frequency linear transducer. RESULTS Studies acquired with the two most frequently utilized transducers significantly differed in number of branches (p = 0.002), vessel thickness (p = 0.007) and echogenicity (p = 0.009). Studies acquired with the two transducers also significantly differed in acquisition frequency (p < 0.001), thermal indices (p < 0.001) and use of harmonic imaging (p < 0.001). Groupwise comparison of vessels imaged with the most frequently utilized transducer found significantly fewer branches in HIE + MRI compared to HIE-MRI negative and non-HIE patients (p = 0.005). CONCLUSION LV can be visualized in the absence of pathology using modern high-resolution neurosonography. Visualization of LV branches varies between HIE + MRI, HIE-MRI neonates and controls. ADVANCES IN KNOWLEDGE High-resolution neurosonography is a feasible technique to assess LV morphology in healthy neonates and neonates with HIE.
Collapse
Affiliation(s)
- Shawn Lyo
- Department of Radiology, SUNY Downstate Health Sciences
University, Brooklyn, NYC,
United States
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
United States
| | | | - Angela Nicole Viaene
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, University of Pennsylvania,
Perelman School of Medicine,
Philadelphia, United States
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of
Philadelphia, Philadelphia,
United States
- Department of Radiology, Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, United States
| |
Collapse
|
7
|
Wear KA. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1243-1256. [PMID: 35133964 PMCID: PMC9204706 DOI: 10.1109/tuffc.2022.3150186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article reports spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. Readers who are uninterested in hydrophone theory may proceed directly to Appendix A for an easy method to estimate spatial-averaging correction factors. Hydrophones were modeled as angular spectrum filters. Simulations modeled nine circular transducers (1-10 MHz; F/1.4-F/3.2) driven at six power levels and measured with eight hydrophones (432 beam/hydrophone combinations). For example, the model predicts that if a 200- [Formula: see text] membrane hydrophone measures a moderately nonlinear 5-MHz beam from an F/1 transducer, spatial-averaging correction factors are 33% (peak compressional pressure or pc ), 18% (peak rarefactional pressure or p ), and 18% (full width half maximum or FWHM). Theoretical and experimental estimates of spatial-averaging correction factors to were in good agreement (within 5%) for linear and moderately nonlinear signals. Criteria for maximum appropriate hydrophone sensitive element size as functions of experimental parameters were derived. Unlike the oft-cited International Electrotechnical Commission (IEC) criterion, the new criteria were derived for focusing rather than planar transducers and can accommodate nonlinear signals in addition to linear signals. Responsible reporting of hydrophone-based pressure and beamwidth measurements should always acknowledge spatial-averaging considerations.
Collapse
|
8
|
Zhang B, Pinton GF, Nightingale KR. On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2310-2320. [PMID: 33985826 PMCID: PMC8494065 DOI: 10.1016/j.ultrasmedbio.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Tissue harmonic signal quality has been shown to improve with elevated acoustic pressure. The peak rarefaction pressure (PRP) for a given transmit, however, is limited by the Food and Drug Administration guidelines for mechanical index. We have previously demonstrated that the mechanical index overestimates in situ PRP for tightly focused beams in vivo, due primarily to phase aberration. In this study, we evaluate two spatial coherence-based image quality metrics-short-lag spatial coherence and harmonic short-lag spatial coherence-as proxy estimates for phase aberration and assess their correlation with in situ PRP in simulations and experiments when imaging through abdominal body walls. We demonstrate strong correlation between both spatial coherence-based metrics and in situ PRP (R2 = 0.77 for harmonic short-lag spatial coherence, R2 = 0.67 for short-lag spatial coherence), an observation that could be leveraged in the future for patient-specific selection of acoustic output.
Collapse
Affiliation(s)
- Bofeng Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
9
|
Urban MW, Rule AD, Atwell TD, Chen S. Novel Uses of Ultrasound to Assess Kidney Mechanical Properties. KIDNEY360 2021; 2:1531-1539. [PMID: 34939037 PMCID: PMC8691758 DOI: 10.34067/kid.0002942021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrasound is a key imaging tool for evaluating the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, although use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma and perfusion characteristics. Because pathologic processes change these factors, the mechanical properties change and can be used for diagnostic purposes and for monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame-rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.
Collapse
Affiliation(s)
| | - Andrew D. Rule
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Zhang B, Pinton GF, Deng Y, Nightingale KR. Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1548-1558. [PMID: 33722439 PMCID: PMC8494063 DOI: 10.1016/j.ultrasmedbio.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/31/2023]
Abstract
In this study, 3-D non-linear ultrasound simulations and experimental measurements were used to estimate the range of in situ pressures that can occur during transcutaneous abdominal imaging and to identify the sources of error when estimating in situ peak rarefaction pressures (PRPs) using linear derating, as specified by the mechanical index (MI) guideline. Using simulations, it was found that, for a large transmit aperture (F/1.5), MI consistently over-estimated in situ PRP by 20%-48% primarily owing to phase aberration. For a medium transmit aperture (F/3), the MI accurately estimated the in situ PRP to within 8%. For a small transmit aperture (F/5), MI consistently underestimated the in situ PRP by 32%-50%, with peak locations occurring 1-2 cm before the focal depth, often within the body wall itself. The large variability across body wall samples and focal configurations demonstrates the limitations of the simplified linear derating scheme. The results suggest that patient-specific in situ PRP estimation would allow for increases in transmit pressures, particularly for tightly focused beams, to improve diagnostic image quality while ensuring patient safety.
Collapse
Affiliation(s)
- Bofeng Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
11
|
Wear KA. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:358-375. [PMID: 33186102 PMCID: PMC8325172 DOI: 10.1109/tuffc.2020.3037946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.
Collapse
|
12
|
Flint K, Bottenus N, Bradway D, McNally P, Ellestad S, Trahey G. An Automated ALARA Method for Ultrasound: An Obstetric Ultrasound Feasibility Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 40:10.1002/jum.15570. [PMID: 33289152 PMCID: PMC10117178 DOI: 10.1002/jum.15570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Ultrasound users are advised to observe the ALARA (as low as reasonably achievable) principle, but studies have shown that most do not monitor acoustic output metrics. We developed an adaptive ultrasound method that could suggest acoustic output levels based on real-time image quality feedback using lag-one coherence (LOC). METHODS Lag-one coherence as a function of the mechanical index (MI) was assessed in 35 healthy volunteers in their second trimester of pregnancy. While imaging the placenta or the fetal abdomen, the system swept through 16 MI values ranging from 0.15 to 1.20. The LOC-versus-MI data were fit with a sigmoid curve, and the ALARA MI was selected as the point at which the fit reached 98% of its maximum. RESULTS In this study, the ALARA MI values were between 0.35 and 1.03, depending on the acoustic window. Compared to a default MI of 0.8, the pilot acquisitions suggested a lower ALARA MI 80% of the time. The contrast, contrast-to-noise ratio, generalized contrast-to-noise ratio, and LOC all followed sigmoidal trends with an increasing MI. The R2 of the fit was statistically significantly greater for LOC than the other metrics (P < .017). CONCLUSIONS These results suggest that maximum image quality can be achieved with acoustic output levels lower than the US Food and Drug Administration limits in many cases, and an automated tool could be used in real time to find the ALARA MI for specific imaging conditions. Our results support the feasibility of an automated, LOC-based implementation of the ALARA principle for obstetric ultrasound.
Collapse
Affiliation(s)
- Katelyn Flint
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Mechanical Engineering, Mechanical Engineering, University of Colorado, Boulder, Boulder, Colorado, USA
| | - David Bradway
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Patricia McNally
- Department of Women's and Children's Services, Duke University Hospital, Durham, North Carolina, USA
| | - Sarah Ellestad
- Division of Maternal-Fetal Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Wear KA, Shah A, Baker C. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2674-2691. [PMID: 32746206 PMCID: PMC8325168 DOI: 10.1109/tuffc.2020.3007808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article reports an investigation of an inverse-filter method to correct for experimental underestimation of pressure due to spatial averaging across a hydrophone sensitive element. The spatial averaging filter (SAF) depends on hydrophone type (membrane, needle, or fiber-optic), hydrophone geometrical sensitive element diameter, transducer driving frequency, and transducer F number (ratio of focal length to diameter). The absolute difference between theoretical and experimental SAFs for 25 transducer/hydrophone pairs was 7% ± 3% (mean ± standard deviation). Empirical formulas based on SAFs are provided to enable researchers to easily correct for hydrophone spatial averaging errors in peak compressional pressure ( pc ), peak rarefactional pressure ( pr ), and pulse intensity integral. The empirical formulas show, for example, that if a 3-MHz, F /2 transducer is driven to moderate nonlinear distortion and measured at the focal point with a 500- [Formula: see text] membrane hydrophone, then spatial averaging errors are approximately 16% ( pc ), 12% ( pr ), and 24% (pulse intensity integral). The formulas are based on circular transducers but also provide plausible upper bounds for spatial averaging errors for transducers with rectangular-transmit apertures, such as linear and phased arrays.
Collapse
|
14
|
Huang O, Long W, Bottenus N, Lerendegui M, Trahey GE, Farsiu S, Palmeri ML. MimickNet, Mimicking Clinical Image Post- Processing Under Black-Box Constraints. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2277-2286. [PMID: 32012003 PMCID: PMC7286793 DOI: 10.1109/tmi.2020.2970867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Image post-processing is used in clinical-grade ultrasound scanners to improve image quality (e.g., reduce speckle noise and enhance contrast). These post-processing techniques vary across manufacturers and are generally kept proprietary, which presents a challenge for researchers looking to match current clinical-grade workflows. We introduce a deep learning framework, MimickNet, that transforms conventional delay-and-summed (DAS) beams into the approximate Dynamic Tissue Contrast Enhanced (DTCE™) post-processed images found on Siemens clinical-grade scanners. Training MimickNet only requires post-processed image samples from a scanner of interest without the need for explicit pairing to DAS data. This flexibility allows MimickNet to hypothetically approximate any manufacturer's post-processing without access to the pre-processed data. MimickNet post-processing achieves a 0.940 ± 0.018 structural similarity index measurement (SSIM) compared to clinical-grade post-processing on a 400 cine-loop test set, 0.937 ± 0.025 SSIM on a prospectively acquired dataset, and 0.928 ± 0.003 SSIM on an out-of-distribution cardiac cine-loop after gain adjustment. To our knowledge, this is the first work to establish deep learning models that closely approximate ultrasound post-processing found in current medical practice. MimickNet serves as a clinical post-processing baseline for future works in ultrasound image formation to compare against. Additionally, it can be used as a pretrained model for fine-tuning towards different post-processing techniques. To this end, we have made the MimickNet software, phantom data, and permitted in vivo data open-source at https://github.com/ouwen/MimickNet.
Collapse
|
15
|
Ilovitsh A, Ilovitsh T, Foiret J, Stephens DN, Ferrara KW. Simultaneous Axial Multifocal Imaging Using a Single Acoustical Transmission: A Practical Implementation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:273-284. [PMID: 30530361 PMCID: PMC6375789 DOI: 10.1109/tuffc.2018.2885080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Standard ultrasound imaging techniques rely on sweeping a focused beam across a field of view; however, outside the transmission focal depth, image resolution and contrast are degraded. High-quality deep tissue in vivo imaging requires focusing the emitted field at multiple depths, yielding high-resolution and high-contrast ultrasound images but at the expense of a loss in frame rate. Recent developments in ultrasound technologies have led to user-programmable systems, which enable real-time dynamic control over the phase and apodization of each individual element in the imaging array. In this paper, we present a practical implementation of a method to achieve simultaneous axial multifoci using a single acoustical transmission. Our practical approach relies on the superposition of axial multifoci waveforms in a single transmission. The delay in transmission between different elements is set such that pulses constructively interfere at multiple focal depths. The proposed method achieves lateral resolution similar to successive focusing, but with an enhanced frame rate. The proposed method uses standard dynamic receive beamforming, identical to two-way focusing, and does not require additional postprocessing. Thus, the method can be implemented in real time on programmable ultrasound systems that allow different excitation signals for each element. The proposed method is described analytically and validated by laboratory experiments in phantoms and ex vivo biological samples.
Collapse
|
16
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
17
|
Wear KA, Liu Y, Harris GR. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:137-148. [PMID: 29389648 PMCID: PMC6103641 DOI: 10.1109/tuffc.2017.2778566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Needle and fiber-optic hydrophones have frequency-dependent sensitivity, which can result in substantial distortion of nonlinear or broadband pressure pulses. A rigid cylinder model for needle and fiber-optic hydrophones was used to predict this distortion. The model was compared with measurements of complex sensitivity for a fiber-optic hydrophone and three needle hydrophones with sensitive element sizes ( ) of 100, 200, 400, and . Theoretical and experimental sensitivities agreed to within 12 ± 3% [root-mean-square (RMS) normalized magnitude ratio] and 8° ± 3° (RMS phase difference) for the four hydrophones over the range from 1 to 10 MHz. The model predicts that distortions in peak positive pressure can exceed 20% when and spectral index (SI) >7% and can exceed 40% when and SI >14%, where is the wavelength of the fundamental component and SI is the fraction of power spectral density contained in harmonics. The model predicts that distortions in peak negative pressure can exceed 15% when . Measurements of pulse distortion using a 2.25 MHz source and needle hydrophones with , 400, and agreed with the model to within a few percent on the average for SI values up to 14%. This paper 1) identifies conditions for which needle and fiber-optic hydrophones produce substantial distortions in acoustic pressure pulse measurements and 2) offers a practical deconvolution method to suppress these distortions.
Collapse
|