1
|
Schoen S, Wang M, Dayavansha S, Naja K, Kumar V, Tadross R, Pope K, Ling L, Hunt D, Peters MK, Iafrate A, Mercaldo ND, Sandstrom K, Kim T, Washburn M, Pierce TT, Samir AE. Increased Mechanical Index Improves Shear Wave Elastography: Pilot Study of Signal Enhancement. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00071-7. [PMID: 40204561 DOI: 10.1016/j.ultrasmedbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Monitoring liver stiffness is essential for managing chronic liver disease, which poses a major public health challenge. Shear wave elastography (SWE), a non-invasive ultrasound-based technique, is commonly used to quantify liver stiffness. However, its performance can be compromised in individuals with higher body mass indices (BMIs) due to increased ultrasound absorption and distortion. Increasing the intensity of the ultrasound push beam could potentially improve signal quality, but regulatory limits currently restrict this due to safety concerns. This pilot study investigated the efficacy of increasing the push pulse mechanical index (MI) from a conventional value of 1.4 to 2.5 toward improving signal quality, and reducing measurement variability and failure rates. METHODS Healthy volunteers (N=22) stratified by BMI underwent SWE with conventional and increased MI push pulses. The resulting data were processed with conventional SWE algorithms, and the signal and measurement quality of the results were analyzed. RESULTS We found that the higher MI improved the signal-to-noise ratio by 4.6 dB (p<10-4, 95% confidence interval: 3.4-5.8 dB) and reduced the measurement's coefficient of variation by 13% (p<10-4, 95% confidence interval: 5.8%-20.3%), enhancing the success rate of SWE examinations, especially for subjects with a BMI over 30. Liver function tests before and after the SWE examinations showed no signs of bioeffects or harm based on serum biomarkers. CONCLUSION These results suggest that increasing the push pulse MI to 2.5 improves the diagnostic utility of SWE, particularly for individuals with a higher BMI, without introducing significant additional risk. This approach could further enhance SWE's vital role in the monitoring of chronic liver disease at a population scale.
Collapse
Affiliation(s)
- Scott Schoen
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | | | | - Kim Naja
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Kathleen Pope
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren Ling
- Tufts University School of Medicine, Boston, MA, USA
| | - David Hunt
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary K Peters
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ann Iafrate
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel D Mercaldo
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Theodore T Pierce
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anthony E Samir
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Ozturk A, Kumar V, Pierce TT, Li Q, Baikpour M, Rosado-Mendez I, Wang M, Guo P, Schoen S, Gu Y, Dayavansha S, Grajo JR, Samir AE. The Future Is Beyond Bright: The Evolving Role of Quantitative US for Fatty Liver Disease. Radiology 2023; 309:e223146. [PMID: 37934095 PMCID: PMC10695672 DOI: 10.1148/radiol.223146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 11/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. Nonfocal liver biopsy is the historical reference standard for evaluating NAFLD, but it is limited by invasiveness, high cost, and sampling error. Imaging methods are ideally situated to provide quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown great promise for the noninvasive evaluation of NAFLD. US is particularly well suited to address the population-level problem of NAFLD because it is lower-cost, more available, and more tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are gaining traction. US techniques including shear-wave elastography, Doppler spectral imaging, attenuation coefficient, hepatorenal index, speed of sound, and backscatter-based estimation have regulatory clearance and are in clinical use. New methods based on channel and radiofrequency data analysis approaches have shown promise but are mostly experimental. This review discusses the advantages and limitations of clinically available and experimental approaches to sonographic liver tissue characterization for NAFLD diagnosis as well as future applications and strategies to overcome current limitations.
Collapse
Affiliation(s)
- Arinc Ozturk
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Viksit Kumar
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Theodore T. Pierce
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Qian Li
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Masoud Baikpour
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Ivan Rosado-Mendez
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Michael Wang
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Peng Guo
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Scott Schoen
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Yuyang Gu
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Sunethra Dayavansha
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Joseph R. Grajo
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| | - Anthony E. Samir
- From the Center for Ultrasound Research & Translation,
Department of Radiology, Massachusetts General Hospital, 101 Merrimac St, 3rd
Floor, 323G, Boston, MA 02114 (A.O., V.K., T.T.P., Q.L., M.B., P.G., S.S., Y.G.,
S.D., A.E.S.); Harvard Medical School, Boston, Mass (A.O., V.K., T.T.P, Q.L.,
A.E.S.); Departments of Medical Physics and Radiology, University of Wisconsin,
Madison, Wis (I.R.M.); GE HealthCare, Milwaukee, Wis (M.W.); and Department of
Radiology, University of Florida, Gainesville, Fla (J.R.G.)
| |
Collapse
|
10
|
Keijzer LBH, Caenen A, Voorneveld J, Strachinaru M, Bowen DJ, van de Wouw J, Sorop O, Merkus D, Duncker DJ, van der Steen AFW, de Jong N, Bosch JG, Vos HJ. A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanical waves. Sci Rep 2020; 10:18431. [PMID: 33116234 PMCID: PMC7595170 DOI: 10.1038/s41598-020-75401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Natural and active shear wave elastography (SWE) are potential ultrasound-based techniques to non-invasively assess myocardial stiffness, which could improve current diagnosis of heart failure. This study aims to bridge the knowledge gap between both techniques and discuss their respective impacts on cardiac stiffness evaluation. We recorded the mechanical waves occurring after aortic and mitral valve closure (AVC, MVC) and those induced by acoustic radiation force throughout the cardiac cycle in four pigs after sternotomy. Natural SWE showed a higher feasibility than active SWE, which is an advantage for clinical application. Median propagation speeds of 2.5-4.0 m/s and 1.6-4.0 m/s were obtained after AVC and MVC, whereas ARF-based median speeds of 0.9-1.2 m/s and 2.1-3.8 m/s were reported for diastole and systole, respectively. The different wave characteristics in both methods, such as the frequency content, complicate the direct comparison of waves. Nevertheless, a good match was found in propagation speeds between natural and active SWE at the moment of valve closure, and the natural waves showed higher propagation speeds than in diastole. Furthermore, the results demonstrated that the natural waves occur in between diastole and systole identified with active SWE, and thus represent a myocardial stiffness in between relaxation and contraction.
Collapse
Affiliation(s)
- Lana B H Keijzer
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Annette Caenen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium.
- Cardiovascular Imaging and Dynamics Lab, Catholic University of Leuven, Leuven, Belgium.
| | - Jason Voorneveld
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oana Sorop
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|