1
|
Roy T, Lee HK, Capron CB, Lopez-Jimenez F, Hesley GK, Greenleaf JF, Urban MW, Guddati MN. Estimation of In Vivo Human Carotid Artery Elasticity Using Arterial Dispersion Ultrasound Vibrometry. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:250-261. [PMID: 39472160 PMCID: PMC11663133 DOI: 10.1016/j.ultrasmedbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Arterial stiffening serves as an early indicator for a variety of cardiovascular diseases. Arterial Dispersion Ultrasound Vibrometry (ADUV) is a method that leverages acoustic radiation force to stimulate arterial wall motion, assess wave propagation characteristics, and subsequently calculate the arterial shear modulus. Previously, we introduced an inversion technique based on a guided cylindrical wave model, which proved effective in rubber tube phantom experiments. In this study, we broaden the scope of our investigation from phantom experiments to in vivo examination of common carotid arteries in human subjects, identify the challenges, and provide solutions, leading to a systematic protocol for ADUV application and robust estimation of the elastic modulus of common carotid arteries. METHODS We achieve this by analyzing ADUV data from 59 subjects categorized as (a) confirmed atherosclerotic cardiovascular disease (n = 27), (b) with cardiovascular risk factors (n = 20), and (c) healthy (n = 12). A crucial aspect of this work is the development of metrics to differentiate high-quality ADUV data from unusable data. RESULTS AND CONCLUSIONS With the proposed metrics, in our cohort, we observed 82% of diameter data and 78% of motion data as usable data. Future work will involve applying this protocol to a larger cohort with subsequent statistical analysis to assess and validate the resulting biomarkers.
Collapse
Affiliation(s)
- Tuhin Roy
- Department of Civil Engineering, NC State University, Raleigh, NC, USA
| | - Hyoung-Ki Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Charles B Capron
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Gina K Hesley
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Murthy N Guddati
- Department of Civil Engineering, NC State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Wang K, Song Y, Kang Y, Guo Y, Ma H, Wu S, Yang J. Ultrasonic detection method based on flexible capillary water column arrays coupling. ULTRASONICS 2024; 139:107276. [PMID: 38461795 DOI: 10.1016/j.ultras.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Conventional water immersion ultrasonic testing faces limitations due to factors such as environmental conditions, workpiece dimensions, corrosion, and resource wastage. Contact-based coupling methods, which employ coupling media or specific coupling structures, offer a convenient approach to coupling acoustic waves and reduce signal attenuation. However, these methods are time-sensitive and lack adaptability to uneven surfaces, particularly when dealing with workpieces featuring subtle undulations, resulting in significant signal decay. This paper presents an ultrasonic coupling method based on a flexible capillary water column array. By employing a stable and flexible water column array within the micro-channels as the coupling medium, stable contact-based transmission of ultrasonic signals is achieved. The influence of water column array unit dimensions and array structures is explored through theoretical analysis and experimentation, demonstrating lower energy attenuation compared to reductions in water column area. Notably, the tests revealed the method's adaptability at oblique angles below 20°, which surpasses the performance of submerged detection at similar angles. This research presents an innovative and stable approach for contact-based ultrasonic coupling testing, particularly in scenarios involving dynamic contact scanning between ultrasonic waves and workpieces.
Collapse
Affiliation(s)
- Kai Wang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Yini Song
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Yihua Kang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China.
| | - Yizhou Guo
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Hongbao Ma
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China
| | - Shengping Wu
- Wuhan Huayu Electromagnetic Testing Equipment Co, China
| | - Jin Yang
- Wuhan College of Arts & Sciences, China
| |
Collapse
|
3
|
Bosio G, Destrempes F, Yazdani L, Roy Cardinal MH, Cloutier G. Resonance, Velocity, Dispersion, and Attenuation of Ultrasound-Induced Shear Wave Propagation in Blood Clot In Vitro Models. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:535-551. [PMID: 38108551 DOI: 10.1002/jum.16387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Improve the characterization of mechanical properties of blood clots. Parameters derived from shear wave (SW) velocity and SW amplitude spectra were determined for gel phantoms and in vitro blood clots. METHODS Homogeneous phantoms and phantoms with gel or blood clot inclusions of different diameters and mechanical properties were analyzed. SW amplitude spectra were used to observe resonant peaks. Parameters derived from those resonant peaks were related to mimicked blood clot properties. Three regions of interest were tested to analyze where resonances occurred the most. For blood experiments, 20 samples from different pigs were analyzed over time during a 110-minute coagulation period using the Young modulus, SW frequency dispersion, and SW attenuation. RESULTS The mechanical resonance was manifested by an increase in the number of SW spectral peaks as the inclusion diameter was reduced (P < .001). In blood clot inclusions, the Young modulus increased over time during coagulation (P < .001). Descriptive spectral parameters (frequency peak, bandwidth, and distance between resonant peaks) were linearly correlated with clot elasticity values (P < .001) with R2 = .77 for the frequency peak, .60 for the bandwidth, and .48 for the distance between peaks. The SW dispersion and SW attenuation reflecting the viscous behavior of blood clots decreased over time (P < .001), mainly in the early stage of coagulation (first minutes). CONCLUSION The confined soft inclusion configuration favored SW mechanical resonances potentially challenging the computation of spectral-based parameters, such as the SW attenuation. The impact of resonances can be reduced by properly selecting the region of interest for data analysis.
Collapse
Affiliation(s)
- Guillaume Bosio
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Ladan Yazdani
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Tsai WY, Hsueh YY, Chen PY, Hung KS, Huang CC. High-Frequency Ultrasound Elastography for Assessing Elastic Properties of Skin and Scars. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1871-1880. [PMID: 35201987 DOI: 10.1109/tuffc.2022.3154235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scars are a type of fibrous tissue that typically forms during the wound healing process to replace damaged skin. Because studies have indicated a high correlation between scar stiffness and clinical symptoms, assessing the mechanical properties of scar is crucial for determining an appropriate treatment strategy and evaluating the treatment's efficacy. Shear wave elastography (SWE) is a common technique for measuring tissue elasticity. Because scars are typically a few millimeters thick, they are thin-layer tissues, and therefore, the dispersion effect must be considered to accurately estimate their elasticity. In this study, high-frequency ultrasound (HFUS) elastography was proposed for estimating the elastic properties of scars by using the Lamb wave model (LWM). An external vibrator was used to generate elastic waves in scar tissue and skin, and the propagation of the elastic waves was tracked through 40-MHz ultrafast ultrasound imaging. The elasticity was estimated through shear wave models (SWMs) and LWMs. The effectiveness of using HFUS elastography was verified through phantom and human studies. The phantom experiments involved bulk phantoms with gelatin concentrations of 7% and 15% and 2-4-mm-thick thin-layer 15% gelatin phantoms. The studies of three patients with eight cases of scarring were also conducted. The phantom experimental results demonstrated that the elasticity estimation biases for the thin-layer mediums were approximately -36% to -50% and 3% to -9% in the SWMs and LWMs, respectively, and the estimated shear moduli were 12.8 ± 5.4 kPa and 74.8 ± 26.8 kPa for healthy skin and scar tissue, respectively. All the results demonstrated that the proposed HFUS elastography has a great potential for improving the accuracy of elasticity estimations in clinical dermatological diagnoses.
Collapse
|
5
|
Beuve S, Kritly L, Callé S, Remenieras JP. Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization. ULTRASONICS 2021; 110:106239. [PMID: 32942089 DOI: 10.1016/j.ultras.2020.106239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80-300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.
Collapse
Affiliation(s)
- S Beuve
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - L Kritly
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - S Callé
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, Tours, France
| | - J-P Remenieras
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
6
|
Dong J, Zhang Y, Lee WN. Walled vessel-mimicking phantom for ultrasound imaging using 3D printing with a water-soluble filament: design principle, fluid-structure interaction (FSI) simulation, and experimental validation. Phys Med Biol 2020; 65:085006. [PMID: 32106096 DOI: 10.1088/1361-6560/ab7abf] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The geometry and stiffness of a vessel are pertinent to blood dynamics and vessel wall mechanical behavior and may alter in diseased conditions. Ultrasound-based ultrafast Doppler (uDoppler) imaging and shear wave imaging (SWI) techniques have been extensively exploited for the assessment of vascular hemodynamics and mechanics. Their performance is conventionally validated on vessel-mimicking phantoms (VMPs) prior to their clinical use. Compared with commercial ones, customized VMPs are favored for research use because of their wider range of material properties, more complex lumen geometries, or wall structures. Fused deposition modeling (FDM) 3D printing technique with plastic filaments is a promising method for making VMPs with a complex vessel lumen. However, it may require a toxic solvent or a long dissolution time currently. In this paper, we present a safe, efficient and geometrically flexible method where FDM 3D printing with a water-soluble polyvinyl alcohol (PVA) filament is exploited to fabricate a walled three-branch VMP (VMP-I). As a key step in fabrication, to avoid dissolution of the PVA-printed vessel core by the solution of the tissue-mimicking material, paraffin wax was used for isolation. Paraffin wax is easy to coat (i.e. without any special equipment), of satisfactory thickness (∼0.1 mm), chemically stable, and easy to remove after fabrication, thus making the proposed method practicable for ultrasound imaging studies. VMP-I was examined by B-mode imaging and power Doppler imaging (PDI) to verify complete dissolution of PVA-printed vessel core in its lumen, confirming good fabrication quality. The flow velocities in VMP-I were estimated by uDoppler imaging with a -0.8% difference, and the shear wave propagation speeds for the same phantom were estimated by SWI with a -6.03% difference when compared with fluid-structure interaction (FSI) simulation results. A wall-less VMP of a scaled and simplified coronary arterial network (VMP-II) was additionally fabricated and examined to test the capability of the proposed method for a complex lumen geometry. The proposed fabrication method for customized VMPs is foreseen to facilitate the development of ultrasound imaging techniques for blood vessels.
Collapse
Affiliation(s)
- Jinping Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
7
|
Wang Y, Li H, Guo Y, Lee WN. Bidirectional Ultrasound Elastographic Imaging Framework for Non-invasive Assessment of the Non-linear Behavior of a Physiologically Pressurized Artery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1184-1196. [PMID: 30876671 DOI: 10.1016/j.ultrasmedbio.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Studies of non-destructive bidirectional ultrasound assessment of non-linear mechanical behavior of the artery are scarce in the literature. We hereby propose derivation of a strain-shear modulus relationship as a new graphical diagnostic index using an ultrasound elastographic imaging framework, which encompasses our in-house bidirectional vascular guided wave imaging (VGWI) and ultrasound strain imaging (USI). This framework is used to assess arterial non-linearity in two orthogonal (i.e., longitudinal and circumferential) directions in the absence of non-invasive pressure measurement. Bidirectional VGWI estimates longitudinal (μL) and transverse (μT) shear moduli, whereas USI estimates radial strain (ɛr). Vessel-mimicking phantoms (with and without longitudinal pre-stretch) and in vitro porcine aortas under static and/or dynamic physiologic intraluminal pressure loads were examined. ɛr was found to be a suitable alternative to intraluminal pressure for representation of cyclic loading on the artery wall. Results revealed that μT values of all samples examined increased non-linearly with εr magnitude and more drastically than μL, whereas μL values of only the pre-stretched phantoms and aortas increased with ɛr magnitude. As a new graphical representation of arterial non-linearity and function, strain-shear modulus loops derived by the proposed framework over two consecutive dynamic loading cycles differentiated sample pre-conditions and corroborated direction-dependent non-linear mechanical behaviors of the aorta with high estimation repeatability.
Collapse
Affiliation(s)
- Yahua Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - He Li
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong; Medical Engineering Programme, University of Hong Kong, Hong Kong.
| |
Collapse
|