1
|
Peng X, He Y, Zhao J, Tan K, Yuan R, Chen S. CRISPR/Cas12a-Mediated Aptasensor Based on Tris-(8-hydroxyquinoline)aluminum Microcrystals with Crystallization-Induced Enhanced Electrochemiluminescence for Acetamiprid Analysis. Anal Chem 2023. [PMID: 37339328 DOI: 10.1021/acs.analchem.3c01485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Improving the electrochemiluminescence (ECL) efficiency of luminophores has always been the goal of the ECL field. Herein, a novel crystallization-induced enhanced ECL (CIE ECL) strategy was exploited to significantly enhance the ECL efficiency of metal complex tris-(8-hydroxyquinoline)aluminum (Alq3). Alq3 monomers self-assembled and directionally grew to form Alq3 microcrystals (Alq3 MCs) in the presence of sodium dodecyl sulfate. The highly ordered crystal structure of Alq3 MCs not only constrained the intramolecular rotation of Alq3 monomers to decrease nonradiative transition but also accelerated the electron transfer between Alq3 MCs and coreactant tripropylamine to increase radiative transition, thus leading to a CIE ECL effect. Alq3 MCs exhibited brilliant anode ECL emission, which was 210-fold stronger than that of Alq3 monomers. The exceptional CIE ECL performance of Alq3 MCs coupled the efficient trans-cleavage activity of CRISPR/Cas12a assisted by rolling circle amplification and catalytic hairpin assembly to fabricate a CRISPR/Cas12a-mediated aptasensor for acetamiprid (ACE) detection. The limit of detection was as low as 0.79 fM. This work not only innovatively exploited a CIE ECL strategy to enhance the ECL efficiency of metal complexes but also integrated CRISPR/Cas12a with a dual amplification strategy for the ultrasensitive monitoring of pesticides such as ACE.
Collapse
Affiliation(s)
- Xiaoge Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| |
Collapse
|
2
|
Aldhahri MM, Almulaiky YQ, El-Shishtawy RM, Al-Shawafi W, Alngadh A, Maghrabi R. Facile Immobilization of Enzyme via Co-Electrospinning: A Simple Method for Enhancing Enzyme Reusability and Monitoring an Activity-Based Organic Semiconductor. ACS OMEGA 2018; 3:6346-6350. [PMID: 31458817 PMCID: PMC6644564 DOI: 10.1021/acsomega.8b00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 05/31/2023]
Abstract
The stability, reusability, and monitoring of enzyme activity have been investigated to improve their efficiency for successful utilization in a broad range of industrial and medical applications. Herein, we present a simple method for fabricating an electrospun fiber/enzyme scaffold via co-electrospinning. The characterization of soluble and immobilized α-amylases with regard to pH, thermal stability, and reusability were studied. An organic light emitting material tris(8-hydroxyquinoline)aluminum was incorporated to monitor the enzyme activity for several reuses.
Collapse
Affiliation(s)
- Musab M. Aldhahri
- Center
of Nanotechnology, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department
of Biochemistry, Faculty of Science, University
of Jeddah, P.O.Box 80203, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
- Department
of Dyeing, Printing and Textile Auxiliaries, National Research Centre, Dokki, 71516 Cairo, Egypt
| | - Waleed Al-Shawafi
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Ahmed Alngadh
- King Abdulaziz
City for Science and Technology, P.O.
Box 6086, Riyadh 11442, Saudi Arabia
| | - Rayan Maghrabi
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Highly Luminescent Material Based on Alq3:Ag Nanoparticles. J Fluoresc 2013; 23:1031-7. [DOI: 10.1007/s10895-013-1230-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
4
|
Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 2013; 138:43-61. [DOI: 10.1039/c2an36122a] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|