1
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Grover Y, Negi PS. Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. J Food Sci 2023; 88:4799-4826. [PMID: 37872804 DOI: 10.1111/1750-3841.16810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Fruits and vegetables are rich in essential nutrients such as minerals, vitamins, and antioxidants; however, they have short shelf life. Freezing is a superior method of preservation compared to other techniques with respect to nutrient retention and maintenance of sensory attributes. However, several physical and textural quality changes associated with freezing and thawing pose a serious problem to the quality of frozen products. Some of the disadvantages associated with the currently employed methods for freezing fruits and vegetables include low rates of heat exchange in blast freezers, shape limitation in plate freezers, high cost of operation in cryogenic freezing, and freezing solution dilution in immersion freezing. Therefore, novel freezing technologies have been developed to achieve controlled ice nucleation and crystallization, enhanced freezing rate, decreased phase transition time, and maintained temperature stability. This review discusses some of the most recent approaches employed in freezing and points to their adoption for maintaining the quality of fruits and vegetables with extended storage.
Collapse
Affiliation(s)
- Yashmita Grover
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Jiang Q, Zhang M, Mujumdar AS. Application of physical field-assisted freezing and thawing to mitigate damage to frozen food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2223-2238. [PMID: 36208477 DOI: 10.1002/jsfa.12260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Freezing is an effective technique to prolong the storage life of food. However, the freeze-thaw process also brings challenges to the quality of food, such as mechanical damage and freeze cracks. Increasingly, physical fields have been preferred as a means of assisting the freezing and thawing (F/T) processes to improve the quality of frozen food because of their high efficiency and simplicity of application. This article systematically reviews the application of high-efficiency physical field techniques in the F/T of food. These include ultrasound, microwave, radio frequency, electric fields, magnetic fields, and high pressure. The mechanisms, application effects, advantages and disadvantages of these physical fields are discussed. To better understand the role of various physical fields, the damage to food caused by the F/T process and traditional freezing is discussed. The evidence shows that the physical fields of ultrasound, electric field and high pressure have positive effects on the F/T of food. Proper application can control the size and distribution of ice crystals effectively, shorten the freezing time, and maintain the quality of food. Microwave and radio frequency exhibit positive effects on the thawing of food. Dipole rotation and ion oscillation caused by electromagnetic waves can generate heat inside the product and accelerate thawing. The effects of magnetic field on F/T are controversial. Although some physical field techniques are effective in assisting F/T of food, negative phenomena such as uneven temperature distribution and local overheating often occur at the same time. The generation of hotspots during thawing can damage the product and limit application of these techniques in industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Canada
| |
Collapse
|
5
|
van der Sman R. Lattice Boltzmann model for freezing of French fries. Curr Res Food Sci 2023; 6:100497. [PMID: 37101806 PMCID: PMC10123062 DOI: 10.1016/j.crfs.2023.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
In this paper we present a Lattice Boltzmann model for food freezing, using the enthalpy method. Simulations are performed using the case study of freezing par-fried french fries. The action of par-frying leads to moisture removal from the crust region, which was treated via the initial conditions for the freezing model. Simulations show that under industrial-relevant freezing conditions, the crust region remains either unfrozen or only partially frozen. This result is important for the practical quality problem of dust, which is the phenomenon of fracturing of the crust during finish-frying. Next to the insight, the Lattice Boltzmann freezing model rendered for the case study of par-fried french fries, we pose that this freezing application is a comprehensive tutorial problem, via which food scientists can be conveniently introduced to the Lattice Boltzmann method. Commonly, the Lattice Boltzmann method has its value in solving complex fluid flow problems, but the complexity of these problems is possibly withholding food scientists to get familiar with the method. Our freezing is solved in 2D, and on a simple square lattice with only 5 particle velocities (a D2Q5 lattice). We hope via this simple tutorial problem, the Lattice Boltzmann method becomes more accessible.
Collapse
|
6
|
Effect of Different Thawing Methods on the Physicochemical Properties and Microstructure of Frozen Instant Sea Cucumber. Foods 2022; 11:foods11172616. [PMID: 36076802 PMCID: PMC9455729 DOI: 10.3390/foods11172616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
To provide recommendations to users regarding which thawing method for frozen instant sea cucumbers entails lower quality losses, in this study we compared the water retention, mechanical properties, protein properties, and microstructures of frozen instant sea cucumbers post-thawing by means of different thawing approaches, including refrigerator thawing (RT), air thawing (AT), water immersion thawing (WT), and ultrasound-assisted thawing (UT). The results indicated that UT took the shortest time. RT samples exhibited the best water-holding capacity, hardness and rheological properties, followed by UT samples. The α-helix and surface hydrophobicity of WT and AT samples were significantly lower than those of the first two methods (p < 0.05). The lowest protein maximum denaturation temperature (Tmax) was obtained by means of WT. AT samples had the lowest maximum fluorescence emission wavelength (λmax). Based on these results, WT and AT were more prone to the degradation of protein thermal stability and the destruction of the protein structure. Similarly, more crimping and fractures of the samples after WT and AT were observed in the sea cucumbers’ microstructures. Overall, we observed that UT can be used to maintain the quality of frozen instant sea cucumbers in the shortest time.
Collapse
|
7
|
Kong D, Quan C, Xi Q, Han R, Koseki S, Li P, Du Q, Yang Y, Forghani F, Wang J. Study on the quality and myofibrillar protein structure of chicken breasts during thawing of ultrasound-assisted slightly acidic electrolyzed water (SAEW). ULTRASONICS SONOCHEMISTRY 2022; 88:106105. [PMID: 35921713 PMCID: PMC9352963 DOI: 10.1016/j.ultsonch.2022.106105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 05/11/2023]
Abstract
The effects of air thawing (AT), water thawing (WT), slightly acidic electrolyzed water (ET), ultrasound-assisted water thawing (WUT) and ultrasound-assisted slightly acidic electrolyzed water (EUT) on the quality and myofibrillar protein (MP) structure of chicken breasts were investigated. The results showed that WUT and EUT could significantly improve the thawing rate compared with AT, WT, and ET groups. The EUT group not only had lower thawing loss, but also their immobilized and free water contents were similar to fresh sample according to the low-field nuclear magnetic resonance (LF NMR) results. The EUT treatment had no adverse effect on the primary structure of the protein. The secondary and tertiary structures of MP were more stable in the EUT group according to Raman and fluorescence spectra. The muscle fibers microstructure from EUT group was neater and more compact compared with other thawing methods. Therefore, EUT treatment could be considered as a novel potential thawing method in the food industry.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunli Quan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shige Koseki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fereidoun Forghani
- Molecular Epidemiology, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
8
|
Jiang Q, Zhang M, Mujumdar AS, Chen B. Comparative freezing study of broccoli and cauliflower: Effects of electrostatic field and static magnetic field. Food Chem 2022; 397:133751. [PMID: 35914456 DOI: 10.1016/j.foodchem.2022.133751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
The effects of 1, 3, 5 kV/cm electrostatic field (EF) and 2, 5, 8 mT static magnetic field (MF) on the quality of frozen broccoli and cauliflower (B and C) were studied. The freezing parameters were significantly improved by 3, 5 kV/cm EF or 8 mT MF treatment (P < 0.05), a maximum reduction of nucleation time and phase transition time by 20.14 % and 32.09 % was found in 5 kV/cm EF treated cauliflower. EF or MF treatment improved sample quality to some extent, the overall effect of 3 kV/cm EF was the best, which led to a maximum drip loss reduction of 64.3 % in cauliflower, accompanied by lower relative conductivity, higher ascorbic acid and less cell rupture. EF or MF did not significantly reduce the damage of the flavor. MF was less effective than EF in improving the quality of frozen B and C.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, Quebec, Canada
| | - Bing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Liao J, Peng B, Chu X, Yu G. Effects of process parameters on the extraction of total anthocyanins from purple sweet potatoes by ultrasound with wide frequency and its kinetics study. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianqing Liao
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| | - Bo Peng
- College of Life Science and Resources and Environment Yichun University,576 Xuefu Road Yichun China
| | - Xinhong Chu
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| | - Guicai Yu
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| |
Collapse
|
10
|
Hu R, Zhang M, Liu W, Mujumdar AS, Bai B. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review. Compr Rev Food Sci Food Saf 2022; 21:1979-2001. [PMID: 35179815 DOI: 10.1111/1541-4337.12919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Freezing has a long history as an effective food preservation method, but traditional freezing technologies have quality limitations, such as the potential for water loss and/or shrinkage and/or nutrient loss, etc. in the frozen products. Due to enhanced quality preservation and simpler thawing operation, synergistic technologies for freezing are emerging as the optimal methods for frozen food processing. This article comprehensively reviewed the recently developed synergistic technologies for freezing and pretreatment, for example, ultrasonication, cell alive system freezing, glass transition temperature regulation, high pressure freezing, pulsed electric field pretreatment, osmotic pretreatment, and antifreeze protein pretreatment, etc. The mechanisms and applications of these techniques are outlined briefly here. Though the application of new treatments in freezing is relatively mature, reducing the energy consumption in the application of these new technologies is a key issue for future research. It is also necessary to consider scale-up issues involved in large-scale applications as much of the research effort so far is limited to laboratory or pilot scale. For future development, intelligent freezing should be given more attention. Freezing should automatically identify and respond to different freezing conditions according to the nature of different materials to achieve more efficient freezing. PRACTICAL APPLICATION: This paper provides a reference for subsequent production and research, and analyzes the advantages and disadvantages of different novel synergistic technologies, which points out the direction for subsequent industry development and research. At the same time, it provides new ideas for the freezing industry.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, Quebec, Canada
| | - Baosong Bai
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
11
|
Martínez-Ramos T, Corona-Jiménez E, Ruiz-López II. Analysis of ultrasound-assisted convective heating/cooling process: Development and application of a Nusselt equation. ULTRASONICS SONOCHEMISTRY 2021; 74:105575. [PMID: 33957370 PMCID: PMC8113778 DOI: 10.1016/j.ultsonch.2021.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 05/25/2023]
Abstract
In this study, the convective heating/cooling process assisted by US irradiation is analyzed with the aims of developing a new convective heat transfer correlation. Heat transfer experiments were conducted with different copper machined geometries (cube, sphere and cylinder), fluid velocities (0.93-5.00 × 10-3 m/s), temperatures (5-60 °C), and US intensities (0-6913 W/m2) using water as heat transfer fluid. The Nusselt (Nu) equation was obtained by assuming an apparent Nu number in the US-assisted process, expressed as the sum of contributions of the forced convection and cavitation-acoustic streaming effects. The Nu equation was validated with two sets of experiments conducted with a mixture of ethylene glycol and water (1:1 V/V) or a CaCl2 aqueous solution (30 g/L) as immersion media, achieving a satisfactory reproduction of experimental data, with mean relative deviations of 17.6 and 17.8%, respectively. In addition, a conduction model with source term and the proposed correlation were applied to the analysis of US-accelerated heating kinetics of dry-cured ham reported in literature. Results demonstrated that US improves heating of ham slices because of the increased heat transfer coefficients and the direct absorption of US power by the foodstuff.
Collapse
Affiliation(s)
- T Martínez-Ramos
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, C.P. 72570 Puebla, Puebla, Mexico
| | - E Corona-Jiménez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, C.P. 72570 Puebla, Puebla, Mexico.
| | - I I Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, C.P. 72570 Puebla, Puebla, Mexico.
| |
Collapse
|
12
|
Ying Y, Xiang Y, Liu J, Chen X, Hu L, Li Y, Hu Y. Optimization of ultrasonic-assisted freezing of Penaeus chinensis by response surface methodology. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Optimization of ultrasonic-assisted freezing of Penaeus chinensis by response surface methodology was studied in order to (1) obtain frozen Penaeus chinensis of high quality and (2) provide practical guidance for the application of ultrasonic-assisted freezing in Penaeus chinensis.
Materials and Methods
Three independent and major variables were selected, including initial ultrasonic temperature (°C), ultrasonic power (W) and ultrasonic time (s on/2 s off). On the basis of one-factor experiments, 17 groups of experiments were established by response surface methodology according to Box–Behnken design. Using multiple regression analysis the experimental data were fitted into a second-order polynomial equation, which was tested by proper statistical methods.
Results
The optimal ultrasonic conditions were as follows: initial ultrasonic temperature 0 °C, ultrasonic power 180 W, ultrasonic time 5 s on/2 s off. Under the optimization conditions, the time of passing through maximum ice crystal generation zone was 105.500 s, which was very close to the predictive passage time of 101.541 s.
Conclusions
Initial ultrasonic temperature, ultrasonic time and ultrasonic power played an important role in the process of ultrasonic-assisted freezing of Penaeus chinensis. Response surface methodology was used to optimize the three factors in ultrasonic-assisted freezing, which could greatly shorten the time of passing through the maximum ice crystal generation zone and maintain the tissue structure of Penaeus chinensis well.
Collapse
Affiliation(s)
| | | | | | | | | | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | |
Collapse
|
13
|
Dual-frequency sequential ultrasound thawing for improving the quality of quick-frozen small yellow croaker and its possible mechanisms. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Tian Y, Zhang P, Zhu Z, Sun DW. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Tian Y, Chen Z, Zhu Z, Sun DW. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. ULTRASONICS SONOCHEMISTRY 2020; 67:105162. [PMID: 32413684 DOI: 10.1016/j.ultsonch.2020.105162] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 05/20/2023]
Abstract
The rapid freezing technique for porous foods using tissue pre-degassing followed by ultrasound-assisted freezing (UF) was developed, and its effects on quality attributes of radishes including tissue air volume, hardness, total calcium contents, bonded calcium contents, retention rates of bonded calcium and microstructures were investigated. To evaluate the freezing efficiency, parameters including total freezing time, phase transition time, and the increases of freezing rate and phase transition rate were determined. Besides, multivariate statistical analyses including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were performed to visualize and further analyze the quality differences of radishes under different treatments. Results suggested that decreasing tissue air volumes can significantly shorten the phase transition time of UF. Samples treated by pre-degassing for 5 min at -0.09 MPa followed by UF (D-0.09MPa5min-UF) showed the freezing rate and phase transition rate increased by 28.8% and 29.8%, respectively, as compared with the same pre-degassed samples frozen by immersion freezing (D-0.09MPa5min-IF). Retention rates of bonded calcium positively correlated with the sample hardness, announcing the importance of bonded calcium maintenance during radish freezing. Both PCA and HCA indicated that D-0.09MPa5min-UF endowed radishes with quality attributes more similar to the fresh ones, which was further verified by microstructure analysis, showing remarkably alleviated plasma membrane puncture, cell separation and deformation in D-0.09MPa5min-UF samples. The current study proved that the technique of tissue pre-degassing followed by UF could effectively improve the freezing efficiency and quality attributes of frozen radishes, and thus have great potentials in rapid freezing of porous foods.
Collapse
Affiliation(s)
- You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhubing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. http://www.ucd.ie/refrig
| |
Collapse
|
16
|
You Y, Kang T, Jun S. Control of Ice Nucleation for Subzero Food Preservation. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09211-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Fu X, Belwal T, Cravotto G, Luo Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. ULTRASONICS SONOCHEMISTRY 2020; 60:104726. [PMID: 31541966 DOI: 10.1016/j.ultsonch.2019.104726] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 05/18/2023]
Abstract
Ultrasound is an advanced non-thermal food-processing technology that has received increasing amounts of interest as an alternative to, or an adjuvant method for, conventional processing techniques. This review explores the sono-physical and sono-chemical effects of ultrasound on food processing as it reviews two typical food-processing applications that are predominantly driven by sono-physical effects, namely ultrasound-assisted extraction (UAE) and ultrasound-assisted freezing (UAF), and the components modifications to food matrices that can be triggered by sono-chemical effects. Efficiency enhancements and quality improvements in products (and extracts) using ultrasound are discussed in terms of mechanism and principles for a range of food-matrix categories, while efforts to improve existing ultrasound-assist patterns was also seen. Furthermore, the progress of experimental ultrasonic equipments for UAE and UAF as food-processing technologies, the core of the development in food-processing techniques is considered. Moreover, sono-chemical reactions that are usually overlooked, such as degradation, oxidation and other particular chemical modifications that occur in common food components under specific conditions, and the influence on bioactivity, which was also affected by food processing to varying degrees, are also summarised. Further trends as well as some challenges for, and limitations of, ultrasound technology for food processing, with UAE and UAF used as examples herein, are also taken into consideration and possible future recommendations were made.
Collapse
Affiliation(s)
- Xizhe Fu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy; Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
18
|
Pero M, Kiani H, Askari G. A novel numerical approach for modeling the coagulation phenomenon in egg white. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milad Pero
- Department of Food Science, Technology and Engineering, Bioprocessing and Biodetection LabUniversity of Tehran Karaj Iran
| | - Hossein Kiani
- Department of Food Science, Technology and Engineering, Bioprocessing and Biodetection LabUniversity of Tehran Karaj Iran
| | - Gholamreza Askari
- Department of Food Science, Technology and Engineering, Transport Properties Laboratory (TPL)College of Agriculture and Natural Resources, University of Tehran Karaj Iran
| |
Collapse
|
19
|
Zhang P, Zhu Z, Sun DW. Using power ultrasound to accelerate food freezing processes: Effects on freezing efficiency and food microstructure. Crit Rev Food Sci Nutr 2018; 58:2842-2853. [DOI: 10.1080/10408398.2018.1482528] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Peizhi Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 , PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 , PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 , PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Wu XF, Zhang M, Adhikari B, Sun J. Recent developments in novel freezing and thawing technologies applied to foods. Crit Rev Food Sci Nutr 2018; 57:3620-3631. [PMID: 26853683 DOI: 10.1080/10408398.2015.1132670] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.
Collapse
Affiliation(s)
- Xiao-Fei Wu
- a State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , China
| | - Min Zhang
- a State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , China.,b Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology , Jiangnan University , China
| | - Benu Adhikari
- c School of Applied Sciences , RMIT University , Melbourne , Australia
| | - Jincai Sun
- d Xuzhou Branch , Haitong Food Group Company , Jiangsu Peixian , China.,e Zhejiang Pharmaceutical College , Ningbo , China
| |
Collapse
|
21
|
Rodríguez AC, Sánchez-Benítez J, Sanz PD. Simulation of the Magnetic Freezing Process Applied to Foods. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-017-9169-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Zhao H, Zhang F, Hu H, Liu S, Han J. Experimental study on freezing of liquids under static magnetic field. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ando Y, Nei D, Kono S, Nabetani H. Current State and Future Issues of Technology Development Concerned with Freezing and Thawing of Foods. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Shinji Kono
- Research and Development Center, Mayekawa Mfg. Co., Ltd
| | | |
Collapse
|
24
|
Xu BG, Zhang M, Bhandari B, Sun J, Gao Z. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Xu Z, Sun DW, Zhu Z. Potential Life Cycle Carbon Savings for Immersion Freezing of Water by Power Ultrasound. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1633-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|