Ruíz-Baltazar ÁDJ. Sonochemical activation-assisted biosynthesis of Au/Fe
3O
4 nanoparticles and sonocatalytic degradation of methyl orange.
ULTRASONICS SONOCHEMISTRY 2021;
73:105521. [PMID:
33774587 PMCID:
PMC8027903 DOI:
10.1016/j.ultsonch.2021.105521]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
In this research, a sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles is proposed. The proposed synthesis methodology incorporates the use of Piper auritum (an endemic plant) as reducing agent and in a complementary way, an ultrasonication process to promote the synthesis of the plasmonic/magnetic nanoparticles (Au/Fe3O4). The synergic effect of the green and sonochemical synthesis favors the well-dispersion of precursor salts and the subsequent growth of the Au/Fe3O4 nanoparticles. The hybrid green/sonochemical process generates an economical, ecological and simplified alternative to synthesizing Au/Fe3O4 nanoparticles whit enhanced catalytic activity, pronounced magnetic properties. The morphological, chemical and structural characterization was carried out by high- resolution Scanning electron microscopy (HR-SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray diffraction (XRD), respectively. Ultraviolet-visible (UV-vis) and X-ray photoelectron (XPS) spectroscopy confirm the Au/Fe3O4 nanoparticles obtention. The magnetic properties were evaluated by a vibrating sample magnetometer (VSM). Superparamagnetic behavior, of the Au/ Fe3O4 nanoparticles was observed (Ms = 51 emu/g and Hc = 30 Oe at 300 K). Finally, the catalytic activity was evaluated by sonocatalytic degradation of methyl orange (MO). In this stage, it was possible to achieve a removal percentage of 91.2% at 15 min of the sonocatalytic process (160 W/42 kHz). The initial concentration of the MO was 20 mg L-1, and the Fe3O4-Au dosage was 0.075 gL-1. The MO degradation process was described mathematically by four kinetic adsorption models: Pseudo-first order model, Pseudo-second order model, Elovich and intraparticle diffusion model.
Collapse