1
|
Dalmaz A, Sivrikaya Özak S. Simultaneous microextraction of Brilliant Blue FCF, Malachite Green, and Rhodamine B in children's play materials: Assessment of greenness approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126016. [PMID: 40101648 DOI: 10.1016/j.saa.2025.126016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The types, quantities, and permissible limits of dyestuffs used in the toy industry are susceptible since the relevant audience is children. For this reason, the dyestuffs used in children's play materials are one of the crucial issues to be emphasized. Rhodamine B, Brilliant Blue FCF, and Malachite Green are some of the most commonly used dyestuffs, and they are also included in our study. In addition to making play materials fun for children, it is vital to determine the amount of the dye in the play material to know the damage it will cause. For this purpose, an ultrasonically assisted, rapid, and highly sensitive green deep eutectic solvent-based microextraction method was developed to detect three synthetic dyes in different children's play materials. Extraction recoveries were between 92.8 and 103.2% under optimum conditions. The method was promising when the results obtained were compared with other studies. When additional recovery studies were carried out on different children's play materials, Rhodamine B in pink-coloured playdough and finger paint, Brilliant Blue FCF in blue-coloured playdough, finger paint, and watercolour paint, and Malachite green dyestuffs in finger paint and crayon were detected. In addition, this study is noteworthy as it is the first study in which simultaneous determination of three dyestuffs by high-performance liquid chromatography method was carried out.
Collapse
Affiliation(s)
- Aslıhan Dalmaz
- Department of Chemistry, Faculty of Art and Science, Düzce University, 81620 Düzce, Turkey.
| | - Sezen Sivrikaya Özak
- Department of Chemistry, Faculty of Art and Science, Düzce University, 81620 Düzce, Turkey
| |
Collapse
|
2
|
Yang ST, Cao YW, Zeng ZY, Gang Z, Chen M, Du BY, Su MM, Yang ZH, Tang ZH, Zeng YL. Determination of Azole Fungicide Residues in Fresh Juice by Magnetic Solid Phase Extraction Based on Fe3O4@ZnAl-LDH@MIL-53(Al) Sorbent in Combination with High-Performance Liquid Chromatograph. J Chromatogr Sci 2025; 63:bmae029. [PMID: 38757928 DOI: 10.1093/chromsci/bmae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Indexed: 05/18/2024]
Abstract
In this work, a magnetic adsorption material based on metal-organic framework (Fe3O4@ZnAl-LDH@MIL-53(Al)) was synthesized and used as an adsorbent in the process of magnetic solid phase extraction. Then, a high-performance liquid chromatograph was used to quantitatively detect triazole fungicides in samples. In order to verify the successful preparation of the material, a series of characterization analyses were carried out. Besides, the key parameters that may affect the extraction efficiency have been optimized, and under optimal conditions the three triazole fungicides showed good linearity in the range of 10-1000 μg/L (R2 ≥ 0.9796); Limit of detections were ranged from 0.013 to 0.030 μg/mL. Finally, the established method was applied to the detection of triazole fungicides in four fresh juice samples. The results showed that the target analyte was not detected in all the test samples. By detecting the recoveries (73.3-104.3%) and coefficient variation (RSD ≤ 6.8%) of triazole fungicides in fortified samples, it proved that this established method meets the requirements of pesticide residue analysis and showed excellent application potential.
Collapse
Affiliation(s)
- Shu-Tong Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Wen Cao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Ying Zeng
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Gang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Chen
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing-Yan Du
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao-Miao Su
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhu-Hua Tang
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Yun-Liu Zeng
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| |
Collapse
|
3
|
Xiang J, Zhou P, Mei H, Liu X, Wang H, Wang X, Li Y. Highly efficient nanocomposites based on molecularly imprinted magnetic covalent organic frameworks for selective extraction of bisphenol A from liquid matrices. Mikrochim Acta 2023; 190:200. [PMID: 37140689 DOI: 10.1007/s00604-023-05778-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 05/05/2023]
Abstract
Highly efficient nanocomposites, hydrophobic molecularly imprinted magnetic covalent organic frameworks (MI-MCOF), have been farbricated by a facile Schiff-base reaction. The MI-MCOF was based on terephthalaldehyde (TPA) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as functional monomer and crosslinker, anhydrous acetic acid as catalyst, bisphenol AF as dummy template, and NiFe2O4 as magnetic core. This organic framework significantly reduced the time consumption of conventional imprinted polymerization and avoided the use of traditional initiator and cross-linking agents. The synthesized MI-MCOF exhibited superior magnetic responsivity and affinity, as well as high selectivity and kinetics for bisphenol A (BPA) in water and urine samples. The equilibrium adsorption capacity (Qe) of BPA on the MI-MCOF was 50.65 mg g-1, which was 3-7-fold higher than of its three structural analogues. The imprinting factor of BPA reached up to 3.17, and the selective coefficients of three analogues were all > 2.0, evidencing the excellent selectivity of fabricated nanocomposites to BPA. Based on the MI-MCOF nanocomposites, the magnetic solid-phase extraction (MSPE), combined with HPLC and fluorescence detection (HPLC-FLD), offered superior analytical performance: wide linear range of 0.1-100 μg L-1, high correlation coefficient of 0.9996, low limit of detection of 0.020 μg L-1, good recoveries of 83.5-110%, and relative standard deviations (RSDs) of 0.5-5.7% in environmental water, beverage, and human urine samples. Consequently, the MI-MCOF-MSPE/HPLC-FLD method provides a good prospect in selective extraction of BPA from complex matrices while replacing traditional magnetic separation and adsorption materials.
Collapse
Affiliation(s)
- Jianxing Xiang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Chongqing Jiangbei Center for Disease Control and Prevention, Chongqing, 400000, China
| | - Peipei Zhou
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - He Mei
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanyan Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China.
| |
Collapse
|
4
|
Chen M, Yu M, Kang R, Sun H, Zhang W, Wang S, Wang N, Wang J. Removal of Pb (II) and V (V) from aqueous solution by glutaraldehyde crosslinked chitosan and nanocomposites. CHEMOSPHERE 2022; 297:134084. [PMID: 35219708 DOI: 10.1016/j.chemosphere.2022.134084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
In this paper, new adsorbents with high mechanical strength chitosan-graphene oxide (CS-GO) and chitosan-titanium dioxide (CS-TiO2) were synthesized by using glutaraldehyde as crosslinking agent, and the adsorption behavior of Pb (II) and V (V) on them were investigated. The materials were characterized by scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial metal ion concentration and contact time on the removal of V (V) and Pb (II) by CS-GO and CS-TiO2 were investigated. Characterization results showed that the hydroxyl group of GO/TiO2 reacted with the amino group of chitosan. A comparison of the kinetic models against experimental data showed that the kinetics react system was best described by the pseudo-second-order model. indicating that chemical adsorption was the main adsorption force. the Langmuir adsorption model and Freundlich model agreed well with the experimental data. The removal capacity of Pb (II) by CS-GO and CS-TiO2 were lower than those of V (V). The uncross-linked -OH and CO were the main adsorptive sites for Pb (II) removal, while uncross-linked -OH and -NH2 played an important role in removing V (V). These findings provided insights on the removing lead and vanadium pollution.
Collapse
Affiliation(s)
- Menghua Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Mengdie Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Runfeng Kang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, PR China.
| | - Wang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Tianjin, 300191, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an, Shandong, 271000, PR China
| |
Collapse
|
5
|
Study on the adsorption of lanthanum ion imprinted on SBA-15/Y. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Du X, Yuan J, Cao H, Ye L, Ma A, Du J, Pan J. Ultrasound-assisted micellar cleanup coupled with large-volume-injection enrichment for the analysis of polar drugs in blood and zebrafish samples. ULTRASONICS SONOCHEMISTRY 2022; 85:105998. [PMID: 35378462 PMCID: PMC8980499 DOI: 10.1016/j.ultsonch.2022.105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
A novel ultrasound-assisted micellar cleanup strategy (UAMC) coupled with large volume injection (LVI) high performance liquid chromatography (HPLC) method was proposed and successfully applied to the analysis of cefathiamidine in complex biological samples such as whole blood, plasma, serum and even zebrafish, a challenging positive real sample. Based on the micelle-biomacromolecule interaction, the phase-separation feature of surfactant micelles and ultrasound cavitation, UAMC possessed an impressive matrix cleanup capability and could rapidly reach distribution equilibrium (approximately 2 min), which enabled simultaneous sample cleanup and analyte extraction within 8 min. Due to the high cleanup efficiency of UAMC, large volume of pretreated samples could be injected for analysis without peak broadening, impurity interference and column degradation. Thus, online analyte enrichment could be automatically performed to significantly improve method sensitivity by the column-switching LVI-HPLC system, a commercial HPLC system with small modifications. The UAMC-LVI-HPLC method creatively integrated sample cleanup, analyte extraction and on-column enrichment into simple operation. In addition, the UAMC-LVI-HPLC method enabled non-matrix-matched analysis of cefathiamidine in complex biological samples. This feature was helpful to address the problems caused by conventional matrix-matched or internal standard calibration methods, such as matrix bias, increased workload, limited availability of suitable blank matrices and the use of expensive internal standards. The method had low limits of detections (e.g., 0.0051 mg/L and 0.038 μg/g), wide linear ranges (0.030-100 mg/L and 0.15-489 μg/g), good linear correlation (R2 = 0.9999), satisfactory accuracy (97.6-109.7%) and excellent intra- and interday precision (0.5-4.9%). Thus, UAMC-LVI-HPLC is expected to be a promising candidate for bioanalysis in therapeutic drug monitoring or pharmacokinetic and toxicology studies in the future.
Collapse
Affiliation(s)
- Xiaotong Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Hongjie Cao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Li Ye
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Ande Ma
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Juan Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Sheibani E, Hosseini A, Sobhani Nasab A, Adib K, Ganjali MR, Pourmortazavi SM, Ahmadi F, Marzi Khosrowshahi E, Mirsadeghi S, Rahimi-Nasrabadi M, Ehrlich H. Application of polysaccharide biopolymers as natural adsorbent in sample preparation. Crit Rev Food Sci Nutr 2021; 63:2626-2653. [PMID: 34554043 DOI: 10.1080/10408398.2021.1978385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Preparing samples for analyses is perhaps the most important part to analyses. The varied functional groups present on the surface of biopolymers bestow them appropriate adsorption properties. Properties like biocompatibility, biodegradability, presence of different surface functional group, high porosity, considerable absorption capacity for water, the potential for modification, etc. turn biopolymers to promising candidates for varied applications. In addition, one of the most important parts of determination of an analyte in a matrix is sample preparation step and the efficiency of this step in solid phase extraction methods is largely dependent on the type of adsorbent used. Due to the unique properties of biopolymers they are considered an appropriate choice for using as sorbent in sample preparation methods that use from a solid adsorbent. Many review articles have been published on the application of diverse adsorbents in sample preparation methods, however despite the numerous advantages of biopolymers mentioned; review articles in this field are very few. Thus, in this paper we review the reports in different areas of sample preparation that use polysaccharides-based biopolymers as sorbents for extraction and determination of diverse organic and inorganic analytes.
Collapse
Affiliation(s)
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sobhani Nasab
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Kourosh Adib
- Department of Chemistry, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran Iran
| | | | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany.,Centre for Climate Change Research, Toronto, Ontario, Canada.,A.R. Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, Ontario, Canada.,Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Tailoring a new hyperbranched PEGylated dendrimer nano-polymer as a super-adsorbent for magnetic solid-phase extraction and determination of letrozole in biological and pharmaceutical samples. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Elbadawy HA, Abdel-Salam AH, Khalil TE. The impact of an Amberlite XAD-16-based chelating resin for the removal of aqueous Cd(II) and Pb(II)ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhu F, Li L, Li N, Liu W, Liu X, He S. Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Nazir MA, Bashir MA, Najam T, Javed MS, Suleman S, Hussain S, Kumar OP, Shah SSA, Rehman AU. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105973] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Ansari S, Masoum S. A hybrid imprinted polymer based on magnetic graphene oxide and carbon dots for ultrasonic assisted dispersive solid-phase microextraction of oxycodone. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Afsharipour R, Dadfarnia S, Shabani AMH, Kazemi E. Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118427. [PMID: 32388234 DOI: 10.1016/j.saa.2020.118427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the spectrophotometric method was optimized via one at a time variable. Under the optimal conditions, the calibration curve exhibited linearity in the concentration range of 1.5-20.0 μg L-1. A limit of detection of 0.20 μg L-1, an enhancement factor of 393 and relative standard deviations (at 10 μg L-1, n = 6) of 4.6% and 8.1% for intra- and inter-day analysis were obtained. The developed procedure was successfully utilized for the quantification of traces of nabumetone in tap water and biological samples with the complex matrix including human urine and serum.
Collapse
Affiliation(s)
- Roya Afsharipour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | - Elahe Kazemi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats' plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1156:122307. [PMID: 32835909 DOI: 10.1016/j.jchromb.2020.122307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Molecularly imprinted polymers (MIPs) based on polydatin were prepared by precipitation polymerization method. Synthesis process of MIPs was optimized by discussion of functional monomers, porogens and the molar ratio of template- functional monomer-cross linker. Then, MIPs were prepared with polydatin as the template, 4-vinyl pyridine as the functional monomer, ethylene glycol dimethyl acrylate as the cross linker, acetonitrile as the porogen and the molar ratio of template-monomer-cross linker at 1:10:20. Scanning electron microscopy and Fourier transform infrared spectrometer were used to inspect macroscale and chemical bond of MIPs. Adsorption capability and selectivity of MIPs to polydatin were investigated by carrying out the static, dynamic and selective experiments. The results showed MIPs performed high adsorption ability and selectivity to polydatin, indicating MIPs could be used to separate and enrich polydatin from the complex systems. Finally, MIPs were applied as the adsorbent for isolation and purification of polydatin from the extract of Polygoni Cuspidati Rhizoma et Radix, rats' plasma and urine samples. MIPs were successfully used to separate polydatin from the Polygoni Cuspidati Rhizoma et Radix and recovery ranged from 89.2% to 91.6%. The maximum concentration of polydatin in rats' plasma and urine samples was 2.84 ± 0.0748 µg mL-1 and 2.64 ± 0.485 µg mL-1, respectively. Moreover, to compare with the MIPs method, organic solvent methods were used to analyze the polydatin in rats' plasma and urine samples. The results illustrated MIPs method was effective and selective for enrichment of polydatin from the medicinal plants and biological samples.
Collapse
|
17
|
Nyaba L, Nomngongo PN. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem 2020; 322:126749. [DOI: 10.1016/j.foodchem.2020.126749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
|
18
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
|
22
|
Magnetic Graphene Oxide Composite for the Microextraction and Determination of Benzophenones in Water Samples. NANOMATERIALS 2020; 10:nano10010168. [PMID: 31963652 PMCID: PMC7022302 DOI: 10.3390/nano10010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
Magnetite nanoparticles (Fe3O4) functionalized with graphene oxide (GO) have been synthesized through a silanization process of the magnetic nanoparticles with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane and further coupling of GO. The synthesized nanomaterials have been characterized by several techniques, such as transmission electron microscopy (TEM), and infrared and Raman spectroscopy, which enabled the evaluation of the different steps of the functionalization process. The hybrid nanomaterial has been employed for the extraction of five benzophenones (benzophenone-1, benzophenone-3, 4-hydroxybenzophenone, benzophenone-6 and benzophenone-8) in aqueous samples by dispersive micro-solid phase extraction, combining the magnetic properties of magnetite nanoparticles with the excellent sorption capacity of graphene oxide via hydrophobic interactions with the analytes. The subsequent separation and quantification of the analytes was performed by liquid chromatography with tandem mass spectrometric detection, achieving limits of detection (LODs) in the range 2.5 to 8.2 μg·L-1, with relative standard deviations ranging from 1.3-9.8% and relative recovering in the range 86 to 105%. Positive swimming pool water samples analysed following the developed method revealed the presence of benzophenones in from 14.3 to 39 μg·L-1.
Collapse
|
23
|
Behbahani ES, Dashtian K, Ghaedi M. Fe/Co-chalcogenide-stabilized Fe3O4 nanoparticles supported MgAl-layered double hydroxide as a new magnetically separable sorbent for the simultaneous spectrophotometric determination of anionic dyes. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Amiri M, Dashtian K, Ghaedi M, Mosleh S. A dual surface inorganic molecularly imprinted Bi2WO6-CuO/Ag2O heterostructure with enhanced activity-selectivity towards the photocatalytic degradation of target contaminants. Photochem Photobiol Sci 2020; 19:943-955. [DOI: 10.1039/d0pp00008f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022]
Abstract
The proposed mechanism reveals that under visible light, MG and AO dyes can be selectively degraded by produced radicals at the surface of the inorganic molecularly imprinted Ag2O-CuO-Bi2WO6 heterojunction.
Collapse
Affiliation(s)
- Maryam Amiri
- Chemistry Department
- Yasouj University
- Yasouj 75918-74831
- Iran
| | | | | | - Soleiman Mosleh
- Department of Gas and Petroleum
- Yasouj University
- Gachsaran 75918-74831
- Iran
| |
Collapse
|
25
|
Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 2019; 308:125696. [PMID: 31655482 DOI: 10.1016/j.foodchem.2019.125696] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a fungal contaminant widely found in grains. In cereal samples, trace zearalenone was extracted and enriched using magnetic-surfaced pseudo molecularly imprinted polymers (SPMIPs) and detected. SPMIPs were prepared with Fe3O4 as the magnetic core, modified halloysites nanotubes as supporting materials, and selective imprinted polymers as shells. Vinyl was modified on the surface of halloysites nanotube. SPMIPs were synthesized with pseudo templates. SPMIPs as the adsorbent of dispersed-solid phase extraction (μ-SPE) were used to purify and enrich ZEA from maize samples. After optimized, the pretreatment method was evaluated. The linearity of the method was ranged within 10-200 ng mL-1. LOD and LOQ were 2.5 ng mL-1 and 8 ng mL-1 respectively. The ZEA spiking recoveries in maize samples ranged within 74.95-88.41% were with good RSDs lower than 4.25%. The developed method was successful applied in maize, oat, and wheat sample treatments and compared.
Collapse
|
26
|
Akkaya E, Bozyiğit GD, Bakirdere S. Simultaneous determination of 4-tert-octylphenol, chlorpyrifos-ethyl and penconazole by GC–MS after sensitive and selective preconcentration with stearic acid coated magnetic nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Yao L, Zhu Y, Xu W, Wang H, Wang X, Zhang J, Liu H, Lin C. Combination of dispersive solid phase extraction with dispersive liquid–liquid microextraction for the sequential speciation and preconcentration of Cr(III) and Cr(VI) in water samples prior to graphite furnace atomic absorption spectrometry determination. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Wang S, Jiao J, Wang X, Gai Q, Kou P, Xu W, Luo M, Zhao C, Fu YJ. An integrated strategy for extraction and pre-concentration of four astragalosides from Radix Astragali by a formulated surfactant aqueous system. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Córdova BM, Jacinto CR, Alarcón H, Mejía IM, López RC, de Oliveira Silva D, Cavalheiro ET, Venâncio T, Dávalos JZ, Valderrama A. Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb(II) and Cd(II) from aqueous solutions. Int J Biol Macromol 2018; 120:2259-2270. [DOI: 10.1016/j.ijbiomac.2018.08.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023]
|
30
|
A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4375-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Naseri H, Sharifi A, Ghaedi M, Dashtian K, Khoramrooz SS, Manzouri L, Khosravani SA, Pezeshkpour V, Sadri F, Askarinia M. Sonochemical incorporated of cytosine in Cu-H 2bpdc as an antibacterial agent against standard and clinical strains of Proteus mirabilis with rsbA gene. ULTRASONICS SONOCHEMISTRY 2018; 44:223-230. [PMID: 29680606 DOI: 10.1016/j.ultsonch.2018.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/09/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
The cytosine embedded copper based metal-organic framework (Bio-MOF) was synthesized by facile one-step sonochemical method by simply mixing of 4-4, biphenyldicarboxylic, cytosine and copper nitrate (Bio-Cu-H2bpdc-Cy). The prepared bio-MOF was characterized by XRD, FTIR and FE-SEM techniques. The effect of Cu-H2bpdc-Cy on the expression of the rsbA gene was evaluated in the clinical and standard Proteus mirabilis and study of MIC of Cu-H2bpdc-Cy by microdilution against them that have the rsbA gene. According to different concentrations of MIC, MBC concentrations was cultured on blood agar culture medium. Regarding to the concentration of MIC, gene expression changes were obtained by real-time PCR. MIC for standard and clinical strains of Proteus mirabilis was 1.6 and 1.8 mg/ml, and also MBC was obtained to be 1.8 and 2.0 mg/ml, respectively. Finally, in the real time PCR method, expression of the rsbA gene in presences of bio-Cu-H2bpdc-Cy was reduced, but has no effect on the gene expression of the Housekeeping DNA Gyrase-B gene. Considering the effect of Cu-H2bpdc-Cy on the rsbA gene in Proteus mirabilis bacteria, it is possible to use of Cu-H2bpdc-Cy agent as a therapeutic supplement against this bacterium.
Collapse
Affiliation(s)
- Hajar Naseri
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran.
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Seyed Sajad Khoramrooz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Vahid Pezeshkpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, IR, Iran
| | - Farzad Sadri
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Marzieh Askarinia
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
32
|
Abbasloo F, Khosravani SA, Ghaedi M, Dashtian K, Hosseini E, Manzouri L, Khorramrooz SS, Sharifi A, Jannesar R, Sadri F. Sonochemical-solvothermal synthesis of guanine embedded copper based metal-organic framework (MOF) and its effect on oprD gene expression in clinical and standard strains of Pseudomonas aeruginosa. ULTRASONICS SONOCHEMISTRY 2018; 42:237-243. [PMID: 29429665 DOI: 10.1016/j.ultsonch.2017.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The guanine incropped Cu based metal-organic framework (Guanine-Cu-MOF) was synthesized by facile one-step sonochemical method by simply mixing of 4-4, biphenyldicarboxylic, guanine and copper nitrate (Bio-Cu-H2bpdc-Gu). The prepared guanine-MOF was characterized by using X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Field emission scanning electron microscopy (FE-SEM) techniques. The morphology of prepared material was sponge-shaped which it was well documented, together with the presence of existing functional groups. The effect of prepared material on oprD Gene Expression was investigated in Clinical and Standard Strains of Pseudomonas aeruginosa (PAO-1) and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of prepared samples against P. aeruginosa strains were determined through the broth micro-dilution method. The expression of oprD gene in strains affected by Cu-H2bpdc-Gu was quantitatively investigated through real-time PCR. MIC of Bio-Cu-H2bpdc-Gu was 400 μg/mL for the standard and clinical strains of P. aeruginosa, while, MBC of this compound was 700 μg/mL for standard strain and 800 μg/mL for clinical strains. The highest and the lowest rate of oprD gene expression were found to be 3.6 and 1.1 fold in the strains, respectively.
Collapse
Affiliation(s)
- Farideh Abbasloo
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mehrorang Ghaedi
- Department of chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ramin Jannesar
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran
| | - Farzad Sadri
- Department of Molecular Microbiology, Dena Pathobiology Laboratory, Yasouj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
33
|
Tanhaei M, Mahjoub AR, Safarifard V. Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. ULTRASONICS SONOCHEMISTRY 2018; 41:189-195. [PMID: 29137743 DOI: 10.1016/j.ultsonch.2017.09.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Graphene oxide-[Zn2(oba)2(bpfb)]·(DMF)5 metal-organic framework nanocomposite (GO-TMU-23; H2oba=4,4'-oxybisbenzoic acid, bpfb=N,N'-bis-(4-pyridylformamide)-1,4-benzenediamine, DMF=N,N-dimethylformamide) is prepared through a simple and large-scale sonochemical preparation method at room temperature. The obtained nanocomposite is characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Additionally, the absorption ability of GO-TMU-23 nanocomposite toward cationic dye methylene blue was also performed. Significantly, GO-TMU-23 nanocomposite exhibits remarkably accelerated adsorption kinetics for methylene blue in comparison with the parent materials. The adsorption process shows that 90% of the dye has been removed and the equilibrium status has been reached in 2min by using the nanocomposites as the adsorbent.
Collapse
Affiliation(s)
- Mahboobeh Tanhaei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-4383 Tehran, Islamic Republic of Iran
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-4383 Tehran, Islamic Republic of Iran.
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran.
| |
Collapse
|
34
|
Application of modified cloud point extraction method for the chromium speciation in artificial saliva extracts of different snuff products. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S. Sonochemical-assisted synthesis of CuO/Cu 2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. ULTRASONICS SONOCHEMISTRY 2018; 40:601-610. [PMID: 28946465 DOI: 10.1016/j.ultsonch.2017.08.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
CuO/CuO2/Cu nanoparticles were prepared by sonochemical combined thermal synthesis method and used as new photocatalyst for simultaneous photocatalytic degradation of safranin O (SO) and methylene blue (MB) dyes in rotating packed bed reactor equipped to blue light emitting diode (LED). The physicochemical properties of the synthesized CuO/Cu2O/Cu nanoparticles were investigated by XRD, SEM and DRS analysis. The band-gap of the prepared CuO/Cu2O/Cu-NPs was estimated to be about 1.42eV which is appropriate for photodegradation process under blue light irradiation. In rotating packed bed reactors, two key parameters are very important, one high centrifugal field and other porous media, which intensify mass transfer operation leads to photodegradation improvement. The maximum photodegradation efficiency was obtained at pH of 6 and subsequently the effects of CuO/Cu2O/Cu-NPs dosage, rotational speed, initial dyes concentration, flow rate and reaction time were studied by central composite design (CCD) and optimized values were found to be 0.3g/L, 900rpm, 10mg/L of both dyes, 0.3L/min and 90min, respectively. Finally, results showed that synergistic effects induced by forming Cu2O/CuO heterojunction containing Cu-NPs co-cocatalyst greatly accelerate electron transfer and effectively retard the reduction of CuO by photo-generated electrons.
Collapse
Affiliation(s)
- Soleiman Mosleh
- Process Intensification Laboratory Chemical Engineering Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mahmood Reza Rahimi
- Process Intensification Laboratory Chemical Engineering Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), Karaj 3177983634, Iran; Department of Physics, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
36
|
|
37
|
ZnO nanoparticles loaded different mesh size of porous activated carbon prepared from Pinus eldarica and its effects on simultaneous removal of dyes: Multivariate optimization. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|