1
|
Vivek V, Koprowski M, Różycka-Sokołowska E, Turek M, Dudziński B, Owsianik K, Knopik Ł, Bałczewski P. High-Efficiency Light Emitters: 10-(Diphenylphosphoryl)-anthracenes from One-Pot Synthesis Including C-O-P to C-P(═O) Rearrangement. J Org Chem 2025; 90:4580-4590. [PMID: 40133206 PMCID: PMC11976837 DOI: 10.1021/acs.joc.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
We report a one-pot synthesis of 10-(diphenylphosphoryl)-anthracenes, featuring a rare multisubstitution on flanking rings with donor-acceptor groups (F, Br, CN, CF3, MeO, OCH2O) in 24-60% yields. Catalyzed by TMSOTf, the process involves a phosphinite-to-phosphine oxide rearrangement and cyclization. These emitters exhibit excellent photoluminescence quantum yields of up to 95% in both solution and solid states. Postsynthetic anthracene functionalization as well as the optoelectronic effect of substituents, particularly the Ph2P═O group, and the aggregation effect in solid on the photophysical properties, were also explored.
Collapse
Affiliation(s)
- Vivek Vivek
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
- The
Bio-Med-Chem Doctoral School of the University of Łódź
and Łódź Institutes of the Polish Academy of Sciences, University of Łódź, Matejki 21/23, Łódź 90-237, Poland
| | - Marek Koprowski
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
| | - Ewa Różycka-Sokołowska
- Institute
of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - Marika Turek
- Institute
of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| | - Bogdan Dudziński
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
| | - Krzysztof Owsianik
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
| | - Łucja Knopik
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
- The
Bio-Med-Chem Doctoral School of the University of Łódź
and Łódź Institutes of the Polish Academy of Sciences, University of Łódź, Matejki 21/23, Łódź 90-237, Poland
| | - Piotr Bałczewski
- Division
of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź 90-363, Poland
- Institute
of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa 42-201, Poland
| |
Collapse
|
2
|
Owsianik K, Różycka-Sokołowska E, Koprowski M, Turek M, Knopik Ł, Vivek V, Dudziński B, Bałczewski P. The First Example of the Friedel-Crafts Cyclization Leading to (10-Hydroxy-9,10-dihydroanthr-9-yl)phosphonium Salts without the Expected Bradsher Dehydration. Int J Mol Sci 2024; 25:1741. [PMID: 38339017 PMCID: PMC10855353 DOI: 10.3390/ijms25031741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The reaction of (ortho-acetalaryl)arylmethanols with various phosphines PR1R2R3 (R1 = R2 = R3 = Ph; R1 = R2 = Ph, R3 = Me and R1 = R2 = Me, R3 = Ph) under acidic conditions (e.g., HCl, HBF4, TsOH) unexpectedly led to the formation of (10-hydroxy-9,10-dihydroanthr-9-yl)phosphonium salts instead of the corresponding anthryl phosphonium salts. The cyclization occurred according to the Friedel-Crafts mechanism but without the usually observed Bradsher dehydration, giving cyclic products in the form of cis/trans isomers and their conformers. In case of electron-rich and less-hindered dimethylphenylphosphine, all four stereoisomers were recorded in 31P{1H} NMR spectra, while for the other phosphines, only the two most stable cis/trans stereoisomers were detected. This study was supported by DFT and NCI calculations in combination with FT-IR analysis.
Collapse
Affiliation(s)
- Krzysztof Owsianik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland; (E.R.-S.); (M.T.)
| | - Marek Koprowski
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
| | - Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland; (E.R.-S.); (M.T.)
| | - Łucja Knopik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
- The Bio-Med-Chem Doctoral School of the University of Łódź and Łódź Institutes of the Polish Academy of Sciences, University of Łódź, Matejki 21/23, 90-237 Łódź, Poland
| | - Vivek Vivek
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
- The Bio-Med-Chem Doctoral School of the University of Łódź and Łódź Institutes of the Polish Academy of Sciences, University of Łódź, Matejki 21/23, 90-237 Łódź, Poland
| | - Bogdan Dudziński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
| | - Piotr Bałczewski
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (M.K.); (Ł.K.); (V.V.); (B.D.)
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland; (E.R.-S.); (M.T.)
| |
Collapse
|
3
|
Marciniak B, Kania S, Bałczewski P, Różycka-Sokołowska E, Wilk J, Koprowski M, Stańdo J, Kuliński J. Highly Substituted 10-RO-(hetero)acenes-Electric Properties of Vacuum-Deposited Molecular Films. Molecules 2023; 28:6422. [PMID: 37687251 PMCID: PMC10490536 DOI: 10.3390/molecules28176422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five highly substituted 10-RO-acenes of various electronic properties, i.e., two extreme electron-donor (1,3-dioxa-cyclopenta[b]) anthracenes with all RO substituents, two anthracene carbaldehydes and one benzo[b]carbazole carbaldehyde possessing both electron-donor and acceptor substituents. The hole mobility data were obtained using subsequent steady state space charge limited currents (SCLC) and Time of Flight (TOF) measurements, performed on the same sample and these were then compared with the results of theoretical hole mobility calculations obtained using the Density Functional Theory (DFT) quantum-chemical calculations using the Marcus-Hush theory. The study shows a good agreement between the theoretical and experimental values which allows for the quick and quantitative estimation of Einstein's mobility values for highly substituted 10-RO anthracene and benzo[b]carbazole based on chemical calculations. This agreement also proves that the transport of holes follows the hopping mechanism. The theoretical calculations indicate that the reorganization energy plays a decisive role in the transport of holes in the amorphous layers of highly substituted hetero(acenes).
Collapse
Affiliation(s)
- Bernard Marciniak
- Structural & Material Chemistry Group, Faculty of Science and Technology, Institute of Chemistry, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (B.M.); (P.B.); (E.R.-S.)
| | - Sylwester Kania
- Centre of Mathematics and Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland;
- Faculty of Technical Physics, Information Technology and Applied Mathematics, Żeromskiego 116, 90-924 Łódź, Poland;
| | - Piotr Bałczewski
- Structural & Material Chemistry Group, Faculty of Science and Technology, Institute of Chemistry, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (B.M.); (P.B.); (E.R.-S.)
- Functional Materials Synthesis Group, Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (J.W.); (M.K.)
| | - Ewa Różycka-Sokołowska
- Structural & Material Chemistry Group, Faculty of Science and Technology, Institute of Chemistry, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (B.M.); (P.B.); (E.R.-S.)
| | - Joanna Wilk
- Functional Materials Synthesis Group, Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (J.W.); (M.K.)
| | - Marek Koprowski
- Functional Materials Synthesis Group, Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (J.W.); (M.K.)
| | - Jacek Stańdo
- Faculty of Technical Physics, Information Technology and Applied Mathematics, Żeromskiego 116, 90-924 Łódź, Poland;
| | - Janusz Kuliński
- Centre of Mathematics and Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland;
| |
Collapse
|
4
|
Owsianik K, Różycka-Sokołowska E, Bałczewski P. O,S-Acetals in a New Modification of oxo-Friedel-Crafts-Bradsher Cyclization-Synthesis of Fluorescent (Hetero)acenes and Mechanistic Considerations. Molecules 2023; 28:molecules28062474. [PMID: 36985445 PMCID: PMC10051591 DOI: 10.3390/molecules28062474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
This paper presents the use of O,S-acetals in a new modification of the oxo-Friedel-Crafts-Bradsher cyclization. In this reaction, under mild reaction conditions (25 °C), three- and four-ring fused RO-acenes (major) and/or HO(CH2)2S-acenes (minor) are formed, the latter products having never been observed before in this type of cyclization. In this way, two electronically different fluorophores could be obtained in a single cyclization reaction, one of them having strong electron donor properties (+M effect of alkoxy groups) and the other having donor-acceptor properties (+M and -I effects of the HO(CH2)2S-group, Hammett's constants). Further increasing the reaction temperature, HCl concentration or prolonging reaction time, surprisingly, yielded a 2:1 mixture of cis and trans dimeric isomers, as the only products of this cyclization. The DFT calculations confirmed a greater stability of the cis isomer compared to the trans isomer. The formation of unexpected dimeric products and HO(CH2)2S-acenes sheds light on the mechanism of oxo-Friedel-Crafts-Bradsher cyclization, involving competitive O/S atom protonation in strained O,S-acetals and in strain-free side groups of intermediate species.
Collapse
Affiliation(s)
- Krzysztof Owsianik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Piotr Bałczewski
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| |
Collapse
|
5
|
Hegde S, Nizam A, Vijayan A, Dateer RB, Krishna SBN. Palladium immobilized on guanidine functionalized magnetic nanoparticles: a highly effective and recoverable catalyst for ultrasound aided Suzuki–Miyaura cross-coupling reactions. NEW J CHEM 2023; 47:18856-18864. [DOI: 10.1039/d3nj03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The Fe3O4@SiO2-TCT-Gua-Pd catalyst anchored with guanidine moiety on Fe3O4 nanoparticles was synthesised for Suzuki–Miyaura cross coupling reaction.
Collapse
Affiliation(s)
- Sumanth Hegde
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka 562112, India
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| |
Collapse
|
6
|
Lanfranco A, Moro R, Azzi E, Deagostino A, Renzi P. Unconventional approaches for the introduction of sulfur-based functional groups. Org Biomol Chem 2021; 19:6926-6957. [PMID: 34333579 DOI: 10.1039/d1ob01091c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organosulfur compounds have a pivotal role in the functionalities of many natural products, pharmaceuticals and organic materials. For these reasons, the search for new methodologies for the formation of carbon-sulfur bonds has been the object of intensive work for organic chemists. However, the proposed strategies suffer from various drawbacks, such as volatility, toxicity, and instability of the sulfur sources or the use of VOC solvents. In this review, we summarise the recent protocols which have the goal of obtaining sulfones, thioethers, thiazines, thiazepines and sulfonamides in an unconventional and/or sustainable way. The use of starting materials less invasive and toxic with respect to the traditional reagents, alternative solvents such as water, ionic liquids or deep eutectic solvents, the exploitation of ultrasound and electrochemistry, increasing the efficiency of the process, are reported. Moreover, representative reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via Giuria, 7, Torino, 10125, Italy.
| | | | | | | | | |
Collapse
|