1
|
Beitia E, Gkogka E, Chanos P, Hertel C, Heinz V, Valdramidis V, Aganovic K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr Rev Food Sci Food Saf 2023; 22:2802-2849. [PMID: 37184058 DOI: 10.1111/1541-4337.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products' composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, nonthermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.
Collapse
Affiliation(s)
- Enrique Beitia
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Chanos
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Christian Hertel
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Vasilis Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
2
|
Brito-Bazán E, Ascanio G, Iñiguez-Moreno M, Calderón-Santoyo M, Córdova-Aguilar MS, Brito-de la Fuente E, Ragazzo-Sánchez JA. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion. Int J Food Microbiol 2023; 399:110255. [PMID: 37210954 DOI: 10.1016/j.ijfoodmicro.2023.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/09/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
High hydrostatic pressure (HHP) is a non-thermal process widely used in the food industry to reduce microbial populations. However, rarely its effect has been assessed in products with high oil content. This study evaluated the efficacy of HHP (200, 250, and 300 MPa) at different temperatures (25, 35, and 45 °C) by cycles (1, 2, or 3) of 10 min in the inactivation of Aspergillus niger spores in a lipid emulsion. After treatments at 300 MPa for 1 cycle at 35 or 45 °C, no surviving spores were recovered. All treatments were modeled by the linear and Weibull models. The presence of shoulders and tails in the treatments at 300 MPa at 35 or 45 °C resulted in sigmoidal curves which cannot be described by the linear model, hence the Weibull + Tail, Shoulder + Log-lin + Tail, and double Weibull models were evaluated to elucidate the inactivation kinetics. The tailing formation could be related to the presence of resistance subpopulations. The double Weibull model showed better goodness of fit (RMSE <0.2) to describe the inactivation kinetics of the treatments with the higher spore reductions. HHP at 200-300 MPa and 25 °C did not reduce the Aspergillus niger spores. The combined HHP and mild temperatures (35-45 °C) favored fungal spore inactivation. Spore inactivation in lipid emulsions by HHP did not follow a linear inactivation. HHP at mild temperatures is an alternative to the thermal process in lipid emulsions.
Collapse
Affiliation(s)
- Estefanía Brito-Bazán
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Gabriel Ascanio
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Maricarmen Iñiguez-Moreno
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico; Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Maria Soledad Córdova-Aguilar
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | | | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico.
| |
Collapse
|
3
|
Díaz V, Leyva-Díaz JC, Almécija MC, Poyatos JM, Del Mar Muñío M, Martín-Pascual J. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. BIORESOURCE TECHNOLOGY 2022; 363:127968. [PMID: 36115507 DOI: 10.1016/j.biortech.2022.127968] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Every day, large quantities of wastewater are discharged from various sources that could be reused. Wastewater contains nutrients such as nitrogen or phosphorus, which can be recovered. Microalgae-based technologies have attracted attention in this sector, as they are able to bioremediate wastewater, harnessing its nutrients and generating algal biomass useful for different downstream uses, as well as having other advantages. There are multiple species of microalgae capable of growing in wastewater, achieving nutrient removal efficiencies surpassing 70%. On the other hand, microalgae contain lipids that can be extracted for energy recovery in biodiesel. Currently, there are several methods of lipid extraction from microalgae. Other biofuels can also be obtained from microalgae biomass, such as bioethanol, biohydrogen or biogas. This review also provides information on bioenergy products and products in the agri-food industry as well as in the field of human health based on microalgae biomass within the concept of circular bioeconomy.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Chemical Engineering, University of Granada 18071, Granada, Spain
| | - Juan Carlos Leyva-Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | | | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain
| | - María Del Mar Muñío
- Department of Chemical Engineering, University of Granada 18071, Granada, Spain
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain
| |
Collapse
|
4
|
Hart A, Anumudu C, Onyeaka H, Miri T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:417-428. [PMID: 35185167 PMCID: PMC8814202 DOI: 10.1007/s13197-021-05022-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/03/2023]
Abstract
Extending shelf-life of food, ensuring it is safe for consumers and meeting regulatory standards is the food industry's governing principle. Food safety is an essential aspect of food processing. Spores-forming microbes such as Bacillus spp. and Clostridium spp. are problematic in the food industry because of their ability to form endospores and survive processing conditions. Hence, their germination in food poses a threat to both shelf-life and safety of food. This paper reports on the current state of supercritical fluid carbon dioxide (SF-CO2) application in the inactivation of spores-forming microbes in food. Unlike high hydrostatic pressure and thermal processes which struggle to deactivate and destroy spores, and if they do, it impacts adversely on the food nutritional and quality attributes. This technique is viable to inactivate spores and maintain the foods structural and nutritional characteristics. The mechanisms of inactivation can be grouped into: (1) release of cellular content due to rupture of the cell wall, coat and cortex, and disruption of membranes, (2) degradation of proteins as a result of interaction with permeated and penetrated SF-CO2 and (3) deactivation of enzymatic activities. It was discovered that the synergistic effect of ultrasound another non-thermal technique or addition of co-solvent such as water, hydrogen peroxide and ethanol or antimicrobial peptide greatly enhanced inactivation of spores. This work harmonizes published perspectives on spores' inactivation mechanisms, and will help inform further research into the application of SF-CO2 in the sterilization of food products.
Collapse
Affiliation(s)
- Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
5
|
Lichun W, Sun Y, Kang M, Zhong M, Qi B, Li Y. Effect of Pasteurization on Membrane Proteins and Oxidative Stability of Oil Bodies in Various Crops. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wu Lichun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yufan Sun
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mengxue Kang
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Mingming Zhong
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Baokun Qi
- College of Food Northeast Agricultural University Harbin 150030 China
| | - Yang Li
- College of Food Northeast Agricultural University Harbin 150030 China
- Harbin Institute of Green Food Science Harbin 150030 China
- Harbin Institute of Food Industry Harbin 150030 China
| |
Collapse
|
6
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Quiles A, Benedito J. Microbial inactivation by means of ultrasonic assisted supercritical CO2. Effect on cell ultrastructure. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Combined pulsed electric field and high-power ultrasound treatments for microbial inactivation in oil-in-water emulsions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Esmaeilian S, Rotabakk BT, Lerfall J, Jakobsen AN, Abel N, Sivertsvik M, Olsen A. The use of soluble gas stabilization technology on food – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Air-Based Atmospheric-Pressure DBD Plasma. Appl Biochem Biotechnol 2021; 193:3641-3650. [PMID: 34347251 DOI: 10.1007/s12010-021-03636-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Air-based atmospheric-pressure plasma is an effective non-thermal method in deactivating various kinds of microbial biofilms with several advantages, including high bactericidal efficiency and low treatment costs. Bacterial biofilm formation is a major determinant in establishment of bacterial infection and also resistance to antibacterial chemotherapy. This study aims to assess the anti-biofilm potential of air-based atmospheric-pressure DBD plasma against Staphylococcus aureus and Escherichia coli biofilms. The biofilms of Staphylococcus aureus and Escherichia coli were exposed to air-based atmospheric-pressure DBD plasma for up to 4 min (control, 30 s, 90 s, 3 min, and 4 min) and their biofilm formation level, viability, and membrane integrity were determined. Based on the results, plasma exposure caused disruption up to 70% and 85% for S. aureus and E. coli biofilms, respectively. The biofilm disruption potential of air-based atmospheric-pressure DBD plasma was confirmed using the scanning electron microscopy (SEM). Besides, based on confocal laser scanning microscopy (CLSM), plasma exposure caused a significant bacterial inactivation and E. coli was found as more susceptible strain than S. aureus. In conclusion, atmospheric-pressure DBD plasma could be considered an efficient non-thermal approach against bacterial pathogenicity by biofilm disruption and thus prevention of infection establishment.
Collapse
|
10
|
Ultrasonic-assisted supercritical CO2 inactivation of bacterial spores and effect on the physicochemical properties of oil-in-water emulsions. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J. Combination of supercritical CO 2 and high-power ultrasound for the inactivation of fungal and bacterial spores in lipid emulsions. ULTRASONICS SONOCHEMISTRY 2021; 76:105636. [PMID: 34192660 PMCID: PMC8254120 DOI: 10.1016/j.ultsonch.2021.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 05/28/2023]
Abstract
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model. Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C.butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A.niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C.butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A.niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion's stability.
Collapse
Affiliation(s)
- Angela Gomez-Gomez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Jose V Garcia-Perez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Jose Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain.
| |
Collapse
|
12
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
13
|
Al-Maqtari QA, Ghaleb ADS, Mahdi AA, Al-Ansi W, Noman AE, Wei M, Al-Adeeb A, Yao W. Stabilization of water-in-oil emulsion of Pulicaria jaubertii extract by ultrasonication: Fabrication, characterization, and storage stability. Food Chem 2021; 350:129249. [PMID: 33610840 DOI: 10.1016/j.foodchem.2021.129249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/01/2022]
Abstract
This study investigated the effect of ultrasonic treatments on the properties and stability of the water-in-oil (W/O) emulsion of Pulicaria jaubertii (PJ) extract. The study used different ultrasound powers (0, 100, 200, 400, and 600 W) at two storage degrees (4 and 25 °C) for 28 days. The findings showed that the emulsifying properties were improved to different extents after ultrasonic treatments. The treatment at 600 W showed optimum particle size, polydispersity index, emulsifying property, viscosity properties, and release of total phenolic content than the other powers. However, the ultrasonic power of 400 W gave positive effects on creaming index and antioxidant release compared to 600 W. The emulsion stored at 4 °C presented higher stability than that stored at 25 °C during the 28 days of storage. Microscopically, the increase in sonication power up to 600 W reduced particle size and decreased flocculation, thus resulted in stable emulsions, which is desirable for its applications in food systems.
Collapse
Affiliation(s)
- Qais Ali Al-Maqtari
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Department of Biology, Faculty of Science, Sana'a University, Sana'a, Yemen; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Abduljalil D S Ghaleb
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; Faculty of Applied and Medical Science, Al-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Amer Ali Mahdi
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Abeer Essam Noman
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minping Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Abdulqader Al-Adeeb
- Laboratory of Industrial Microbiology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
14
|
|
15
|
Soares VP, Fagundes MB, Guerra DR, Leães YSV, Speroni CS, Robalo SS, Emanuelli T, Cichoski AJ, Wagner R, Barin JS, Bertuol DA, Ballus CA. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res Int 2020; 135:109305. [PMID: 32527490 DOI: 10.1016/j.foodres.2020.109305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/18/2023]
Abstract
Aromatization of extra-virgin olive oil (EVOO) with aromatic plants is commonly used to enrich the oil with aromatic and antioxidant compounds. Ultrasound can be an alternative to accelerate this process. The objective of this work was to determine if ultrasound is able to accelerate EVOO aromatization with rosemary and basil and how it affects the migration of volatile and other compounds, the oxidative stability and the antioxidant capacity of the aromatized products. Ultrasound parameters (amplitude, time, and temperature of extraction) were optimized for each herb with central composite designs. Free fatty acid, peroxide value, K232, K270, ΔK, fatty acid profile, total phenolics, antioxidant capacity, polar compounds, oxidative stability and volatile compounds profile were evaluated in all samples. Physical effects of ultrasound on the herbs were observed by scanning electron microscopy. In the optimization, variables related to the oxidative processes were minimized and compounds migration and oxidative stability were maximized. Results were 70.09% amplitude, 36.6 min and 35 °C for rosemary and 95.98% amplitude, 9.9 min and 30 °C for basil. These conditions were compared to 7 and 15 days of conventional maceration (CM). Aromatization of EVOO with rosemary, both by ultrasound assisted maceration (UAM) or CM, improved total phenolics, terpenes, esters, ketones, stability and induction times, as well as decreased the values for the quality parameters. The use of UAM accelerated the process to 37 min. However, aromatization with basil by CM increased the values for the quality parameters and reduced the total phenolics, the antioxidant capacity and the induction and stability times. UAM with basil reached better results than those observed for CM, in only 10 min. In conclusion, rosemary is more appropriate than basil for EVOO aromatization, and UAM was the best choice to accelerate the processes when compared to CM.
Collapse
Affiliation(s)
- Victória Perceval Soares
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Mariane Bittencourt Fagundes
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Daniela Rigo Guerra
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Yasmim Sena Vaz Leães
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Caroline Sefrin Speroni
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Silvino Sasso Robalo
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Alexandre José Cichoski
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Juliano Smanioto Barin
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Daniel Assumpção Bertuol
- Environmental Process Laboratory (LAPAM), Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Centre for Rural Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil.
| |
Collapse
|