1
|
Jia M, Farid MU, Ho YW, Ma X, Wong PW, Nah T, He Y, Boey MW, Lu G, Fang JKH, Fan J, An AK. Advanced nanobubble flotation for enhanced removal of sub-10 µm microplastics from wastewater. Nat Commun 2024; 15:9079. [PMID: 39433744 PMCID: PMC11493987 DOI: 10.1038/s41467-024-53304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Sub-10 µm microplastics (MPs) in aquatic environments pose significant ecological and health risks due to their mobility and potential to carry harmful microcontaminants. Our effluent analysis from a Hong Kong Sewage Treatment Works shows that traditional treatment often fails to effectively remove these MPs. These small-sized MPs are commonly neglected due to challenges in accurate quantification, analysis, and removal. This study introduces a nanobubble-assisted flotation process that enhances the removal efficiency of both regular and irregular small-sized MPs from wastewater. The proposed process outperforms the traditional flotation process by fostering a more effective interaction between bubbles and MPs, increasing removal rates of MPs from 1 µm to 10 µm by up to 12% and providing a total efficiency boost of up to 17% for various particle sizes. Improvements are attributed to enhanced collision and adhesion probabilities, hydrophobic interactions, as well as better floc flotation. Supported by empirical evidence, mathematical models, and Molecular Dynamics simulations, this research elucidates the nanoscale mechanisms at play. The findings confirm the nanobubble-assisted flotation technique as an innovative and practical approach to removing sub-10 µm MPs in water treatment processes.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong SAR, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
2
|
Zhou W, Liu X, Long Y, Xie G, Chen Y. Monitoring effects of hydrodynamic cavitation pretreatment of sodium oleate on the aggregation of fine diaspore particles through small-angle laser scattering. ULTRASONICS SONOCHEMISTRY 2023; 100:106574. [PMID: 37734167 PMCID: PMC10514452 DOI: 10.1016/j.ultsonch.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Hydrodynamic cavitation (HC) enhanced fine particle aggregation could be largely due to the generation of tiny bubbles and their role in bridging particles. However, the lack of adequate characterizations of aggregates severally limits our further understanding of the associated aggregation behaviors. In this study, the aggregation of fine diaspore particles was comparatively investigated in sodium oleate (NaOl) solutions with and without HC pretreatment through the small-angle laser scattering (SALS) technique in a shear-induced aggregation (SIA) system. Results showed that HC pretreatment caused the formation of bulk nanobubbles (BNBs), which significantly modified the particle interactions and thereby modified the size and mass fractal dimension (Df) of aggregates under different SIA conditions. Although HC pretreatment did not noticeably alter the gradual change trend of aggregate size and structure characteristics under specific variables, BNBs bridging facilitated the aggregation process towards the diffusion-limited cluster aggregation model, resulting in the formation of larger but looser aggregates. This effect was more pronounced under relatively high NaOl concentrations. Apart from BNBs, the aggregation was also affected by cavitation bubbles formed during shear cavitation, which was more significant under high stirring intensity conditions (i.e., 1800 rpm) than the low stirring intensity conditions (i.e., 600 rpm).
Collapse
Affiliation(s)
- Weiguang Zhou
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China; Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xinran Liu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Yufeng Long
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Guangyuan Xie
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Yanfei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
3
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. MINERALS 2022. [DOI: 10.3390/min12080944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution.
Collapse
|
5
|
Zhang M, Li P, Yao W, Xu Z, Fan R. Enhanced kaolinite flotation using amine coated nanobubbles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhou S, Zhou W, Dong L, Peng Y, Xie G. Micellization Transformations of Sodium Oleate Induced by Gas Nucleation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9701-9710. [PMID: 34339198 DOI: 10.1021/acs.langmuir.1c01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interfacial properties of surfactant solutions are closely related to the micellization of surfactants. Temperature, salt type and concentration, pH, and other parameters affecting the micellization of surfactants have all been extensively investigated previously. However, the effect of dissolved gas on surfactant micellization and associated interfacial properties' transformations is not completely understood yet. In this study, sodium oleate (NaOl) was chosen as the research object, and the role of gas/gas nucleation in NaOl micellization was systematically investigated. The results indicated that the solution changed to be more turbid and the dissolved oxygen content increased after NaOl solutions were subjected to compression-decompression treatments. Meanwhile, the surface tension of the NaOl solution was altered, which was more pronounced when the concentration of NaOl was close to the critical micelle concentration. Given that the surface tension was a good indicator of the assembly and distribution state of the soluble monomers and insoluble micelles of NaOl, interactions between nucleated bubbles originating from the gas nucleation and NaOl molecules were unveiled through the analysis of the size distribution and zeta potential of sub-micro- and nanoscale particles in bulk solutions. Finally, possible micellization models of NaOl molecules, fully considering the role of gas/gas nucleation, were proposed under varying NaOl concentration conditions.
Collapse
Affiliation(s)
- Shaoqi Zhou
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Weiguang Zhou
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Lisha Dong
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yaoli Peng
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Guangyuan Xie
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
7
|
Xia W, Li Y, Wu F, Niu C. Enhanced flotation selectivity of fine coal from kaolinite by anionic polyacrylamide pre-conditioning. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang F, Sun L, Yang H, Gui X, Schönherr H, Kappl M, Cao Y, Xing Y. Recent advances for understanding the role of nanobubbles in particles flotation. Adv Colloid Interface Sci 2021; 291:102403. [PMID: 33780858 DOI: 10.1016/j.cis.2021.102403] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Traditional froth flotation is the primary method for the separation and upgrading of fine mineral particles. However, it is still difficult for micro-fine and low-quality minerals to effectively separate. It is generally believed that bubble miniaturization is of great significance to improve flotation efficiency. Due to their unique physical and chemical properties, the application of nanobubbles (NBs) in ore flotation and other fields has been widely investigated as an important means to solve the problems of fine particle separation. Therefore, a fundamental understanding of the effect of NBs on flotation is a prerequisite to adapt it for the treatment of fine and low-quality minerals for separation. In this paper, recent advances in the field of nanobubble (NB) formation, preparation and stability are reviewed. In particular, we highlight the latest progress in the role of NBs on particles flotation and focus in particular on the particle-particle and particle-bubble interaction. A discussion of the current knowledge gap and future directions is provided.
Collapse
Affiliation(s)
- Fanfan Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lijuan Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Haichang Yang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiahui Gui
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen 57076, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yijun Cao
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450066, Henan, China).
| | - Yaowen Xing
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|