1
|
Chuai S, Zhu X, Ye L, Liu Y, Wang Z, Li F. Study on the mechanism of ultrasonic cavitation effect on the surface properties enhancement of TC17 titanium alloy. ULTRASONICS SONOCHEMISTRY 2024; 108:106957. [PMID: 38901304 PMCID: PMC11239707 DOI: 10.1016/j.ultsonch.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
In industrial production and scientific research, ultrasonic cavitation technology, with its outstanding physical and chemical processing capabilities, has been widely applied in fields such as material surface modification, chemical synthesis, and biotechnology, becoming a focal point of research and application. This article delves into the effects of different ultrasonic frequencies on cavitation outcomes through the combined use of numerical simulation, fluorescence analysis, and high-speed photography, specifically analyzing the quantitative improvement in the mechanical properties of TC17 titanium alloy under ultrasonic cavitation at frequencies of 20 kHz, 30 kHz, and 40 kHz. The study found that at an ultrasonic frequency of 20 kHz, the maximum expansion radius of cavitation bubbles can reach 51.4 μm, 8.6 times their initial radius. Correspondingly, fluorescence intensity and peak area also increased to 402.8 and 28104, significantly above the baseline level. Moreover, after modification by ultrasonic cavitation, the original machining marks on the surface of TC17 titanium alloy became fainter, with the emergence of new, uniformly distributed microfeatures. The microhardness of the material increased from 373.7 Hv to 383.84 Hv, 396.62 Hv, and 414.06 Hv, with a maximum improvement of 10.8 %. At the same time, surface height difference and roughness significantly decreased (to 3.168 μm and 0.61 μm respectively), with reductions reaching 45.1 % and 42.4 %, indicating a significant improvement in material surface quality. Notably, there is a negative correlation between the improvement of mechanical properties and ultrasonic frequency, suggesting that the improvement effects decrease as ultrasonic frequency increases. This research not only reveals the quantitative relationship between ultrasonic cavitation frequency and material surface modification effects but also provides a solid scientific basis and practical guidance for the application of ultrasonic cavitation technology in surface engineering, signifying the technology's potential for broad application in the future.
Collapse
Affiliation(s)
- Shida Chuai
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xijing Zhu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.
| | - Linzheng Ye
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Yao Liu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Zexiao Wang
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Fei Li
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
2
|
Schieppati D, Mohan M, Blais B, Fattahi K, Patience GS, Simmons BA, Singh S, Boffito DC. Characterization of the acoustic cavitation in ionic liquids in a horn-type ultrasound reactor. ULTRASONICS SONOCHEMISTRY 2024; 102:106721. [PMID: 38103370 PMCID: PMC10765111 DOI: 10.1016/j.ultsonch.2023.106721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs. The model accounts for bubbles, acoustic impedance mismatch at interfaces, and treats the ILs as incompressible, Newtonian, and saturated with argon. Following a statistical analysis of the simulation results, we determined that viscosity and ultrasound input power are the most significant variables affecting the intensity of the acoustic pressure field (P), the volume of cavitation zones (V), and the magnitude of the maximum acoustic streaming surface velocity (u). V and u increase with the increase of ultrasound input power and the decrease in viscosity, whereas the magnitude of negative P decreases as ultrasound power and viscosity increase. Probe immersion depth positively correlates with V, but its impact on P and u is insignificant. 1-alkyl-3-methylimidazolium-based ILs yielded the largest V and the fastest acoustic jets - 0.77 cm3 and 24.4 m s-1 for 1-ethyl-3-methylimidazolium chloride at 60 W. 1-methyl-3-(3-sulfopropyl)-imidazolium-based ILs generated the smallest V and lowest u - 0.17 cm3 and 1.7 m s-1 for 1-methyl-3-(3-sulfopropyl)-imidazolium p-toluene sulfonate at 20 W. Sonochemiluminescence experiments validated the model.
Collapse
Affiliation(s)
- Dalma Schieppati
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Mood Mohan
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Bioscience Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bruno Blais
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Kobra Fattahi
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Gregory S Patience
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Daria C Boffito
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada.
| |
Collapse
|
3
|
Wu P, Wang X, Lin W, Bai L. Acoustic characterization of cavitation intensity: A review. ULTRASONICS SONOCHEMISTRY 2022; 82:105878. [PMID: 34929549 PMCID: PMC8799601 DOI: 10.1016/j.ultsonch.2021.105878] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
Cavitation intensity is used to describe the activity of cavitation, and several methods are developed to identify the intensity of cavitation. This work aimed to provide an overview and discussion of the several existing characterization methods for cavitation intensity, three acoustic approaches for charactering cavitation were discussed in detail. It was showed that cavitation noise spectrum is too complex and there are some differences and disputes on the characterization of cavitation intensity by cavitation noise. In this review, we recommended a total cavitation noise intensity estimated via the integration of real cavitation noise spectrum over full frequency domain instead of artificially adding inaccurate filtering processing.
Collapse
Affiliation(s)
- Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuming Wang
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Bai
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|