1
|
Yang P, Wu Q, Liu H, Zhou S, Chen W, Zhong H, Zhang K, Zou F, Ying H. Simulation and mechanism for the Ultrasound-Assisted Oiling-Out Process: A case study using Fructose-1,6-diphosphate. ULTRASONICS SONOCHEMISTRY 2024; 108:106953. [PMID: 38879963 PMCID: PMC11228588 DOI: 10.1016/j.ultsonch.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Liquid-liquid separation, commonly referred to as oiling-out, frequently can occurs during crystallization, especially the anti-solvent crystallization process of phosphoryl compounds, and poses potential hurdle for high-quality product. Efficiently regulating oiling-out during crystallization remains a significant challenge. Among various techniques, ultrasound emerges as a green and effective approach to enhance the crystallization process. However, there is a dearth of in-depth research exploring the microscopic mechanisms of this process. Therefore, our research focused on the fructose-1,6-diphosphate (FDP), a typical phosphoryl compound, to gain a deeper understanding of how ultrasound influences the oiling-out process. The focused beam reflectance measurement (FBRM) technology was used to investigate the oiling-out phenomenon of FDPNa3 across various solvent ratios. In addition, the influence of ultrasound on the induction time was studied and the nucleation energy barrier was calculated. Finally, to further unravel the microscopic mechanisms, we utilized molecular simulation techniques to analyze the impact of ultrasound power on the dissolution-precipitation process. Our observations revealed a consistent oiling-out process that attainted a stable state regardless of the solvent employed. Notably, the results of the oiling-out induction time experiments indicated that ultrasound significantly reduced helped lower the nucleation energy barrier of FDP3- ions, thereby dismantling FDP3-clusters in solution. Thus, in turn, shortened the reduced induction time and promoted crystallization. Furthermore, ultrasound reduced the interactions between FDP3-ions and water molecules as well as FDP3- ions themselves. As simulated field intensity increased, these interaction forces gradually diminished, the thickness of the hydration layer surrounding the FDP3- clusters facilitating the disruption of clusters, ultimately enhancing the crystallization process.
Collapse
Affiliation(s)
- Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haodong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuyang Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wensu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huamei Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Keke Zhang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Li J, Li S, Huang S, Xu J, Yan Q, Jin S, Liu Y. Facilitating polymorphic crystallization of HMX through ultrasound and trace additive assistance. ULTRASONICS SONOCHEMISTRY 2024; 107:106946. [PMID: 38852536 PMCID: PMC11187238 DOI: 10.1016/j.ultsonch.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Low sensitivity octahydro-1,3,4,7-tetranitro-1,3,5,7-tetrazocine (HMX) has garnered significant attention from researchers due to its reduced shock sensitivity. However, the crystallization process poses challenges due to the high solidity and viscosity of the metastable α phase. Despite efforts to address this with additional energy sources like ultrasonic irradiation, prolonged exposure duration often results in small particle sizes, hindering the production of HMX with a consistent particle size distribution, thus limiting its applicability. To overcome these challenges, a method combining ultrasonic irradiation and trace H+ additive was proposed and investigated for their impact on the polymorphic transformation of HMX. The H+ additive was found to modify barriers, thus there was a lack of competitive driving force for the nucleation or growth of the metastable α form, thereby shortening the transformation pathway and duration. Moreover, the H+ additive significantly accelerated the nucleation rate of the β form (67.7 orders of magnitude faster with 0.10 wt ‰ H+) and the growth rate of β form HMX (5.8 orders of magnitude faster with 0.10 wt ‰ H+). While H+ additive alone was insufficient to induce spontaneous nucleation of the β form, combining it with short-duration ultrasonic irradiation further promoted β nucleation and shortened the polymorphic transformation duration (almost 20 orders of magnitude shorter). This rational approach led to effective control of the transformation process. The resulting low sensitivity HMX crystals exhibited varying mean sizes ranging from 20 to 340 μm, with purity exceeding 99.6 %, an apparent density greater than 1.8994 g/cm3, and few internal defects, fully meeting the requirements of low-sensitivity HMX, thus significantly expanding its potential applications. Our study sheds light on the mechanisms governing HMX polymorphic transformation in the presence of additives and ultrasonic irradiation, offering guidance for the rational control of this complex transformation.
Collapse
Affiliation(s)
- Jie Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China; School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100083, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Shiliang Huang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China
| | - Qilong Yan
- Science and Technology on Combustion, Internal Flow and Thermo-structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shaohua Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100083, China.
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mian Yang 621900, China.
| |
Collapse
|
3
|
Zhao J, Yang P, Fu J, Wang Y, Wang C, Hou Y, Shi Y, Zhang K, Zhuang W, Ying H. Polymorph control by designed ultrasound application strategy: The role of molecular self-assembly. ULTRASONICS SONOCHEMISTRY 2022; 89:106118. [PMID: 35985257 PMCID: PMC9403553 DOI: 10.1016/j.ultsonch.2022.106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Molecular self-assembly plays a vital role in the nucleation process and sometimes determines the nucleation outcomes. In this study, ultrasound technology was applied to control polymorph nucleation. For the first time, different ultrasonic application methods based on the nucleation mechanisms have been proposed. For PZA-water and DHB-toluene systems that the molecular self-assembly in solution resembles the synthon in crystal structure, ultrasound pretreatment strategy was conducted to break the original molecular interactions to alter the nucleated form. When the solute molecular self-associates can't give sufficient information to predict the nucleated polymorph like INA-ethanol system, the method of introducing continuous ultrasonic irradiation in the nucleation stage was applied. The induction of ultrasound during nucleation process can break the original interactions firstly by shear forces and accelerate the occurrence of nucleation to avoid the reorientation and rearrangement of solute molecules. These strategies were proved to be effective in polymorph control and have a degree of applicability.
Collapse
Affiliation(s)
- Jingjing Zhao
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Pengpeng Yang
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinqiu Fu
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Wang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Chiyi Wang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yihang Hou
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhong Shi
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Keke Zhang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Zhuang
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hanjie Ying
- Biology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
4
|
Salification Controls the In-Vitro Release of Theophylline. CRYSTALS 2022. [DOI: 10.3390/cryst12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustained released formulation is the most used strategy to control the efficacy and the adverse reactions of an API (active pharmaceutical ingredient) with a narrow therapeutic index. In this work, we used a different way to tailor the solubility and diffusion of a drug. Salification of Theophylline with Squaric Acid was carried out to better control the absorption of Theophylline after administration. Salification proved to be a winning strategy decreasing the dissolution of the APIs up to 54% with respect to Theophylline. Most importantly, this was accomplished in the first 10 min of the dissolution process, which are the most important for the API administration. Two polymorphs were identified and fully characterized. Theophylline squarate was discovered as trihydrate (SC-XRD) and as a metastable anhydrous form. Indeed, during the Variable Temperature-XRPD experiment, the trihydrate form turned back into the two starting components after losing the three molecules of water. On the other hand, the synthesis of the trihydrate form was observed when a simple mixing of the two starting components were exposed to a high humidity relative percentage (90% RH).
Collapse
|