1
|
Kopač T, Ručigaj A. Impact of fiber diameter and surface substituents on the mechanical and flow properties of sonicated cellulose dispersions. Int J Biol Macromol 2024; 281:136210. [PMID: 39419686 DOI: 10.1016/j.ijbiomac.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
This study investigates how sonication amplitude and time affect 2 wt% cationic nanofibrils (CCNF) and microfibrils (CCMF) dispersions, focusing on mechanical properties and flow behavior. Sonication reduces fiber diameter and increases the concentration of substituent groups available for hydrogen bonding. This effect becomes significant when diameters fall below 100 nm, leading to enhanced storage and loss moduli. CCNF achieves a maximum shear modulus of 600 Pa, whereas CCMF fibers do not undergo similar size reductions. CCNF's viscosity and critical stress follow a square root relationship with sonication amplitude, due to minimal fiber size reduction at high sonication levels (smaller than 20 nm), unlike CCMF (diameter reduction up to 50 nm), which exhibits a linear increase due to more pronounced fiber fragmentation. At high sonication levels, CCNF shows an exponential rise in critical stress (up to 800 Pa), suggesting tiny fibers infiltrate the hydrogel network, thereby improving its integrity and resistance to shear stresses. By integrating theoretical models with experimental findings, this work presents a unified view of sonication's essential role in fine-tuning the mechanical and flow properties of cellulose-based materials. This research enhances understanding of cellulose dispersion behavior under sonication and provides a foundation for designing optimized cellulose-based materials.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Pączkowski P, Sigareva NV, Gorelov BM, Terets MI, Sementsov YI, Kartel MT, Gawdzik B. The Influence of Carbon Nanotubes on the Physical and Chemical Properties of Nanocomposites Based on Unsaturated Polyester Resin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2981. [PMID: 38063677 PMCID: PMC10708070 DOI: 10.3390/nano13232981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2024]
Abstract
The new actual scientific direction is in the development of different nanocomposites and the study of their medical-biological, physicochemical, and physicomechanical properties. One way to expand the functionality of nanocomposites and nanomaterials is to introduce carbon nanostructures into the polymer matrix. This study presents the properties of unsaturated polyester resins (Estromal, LERG S.A.) based on PET recyclate with multi-walled carbon nanotubes (MWCNTs): their mechanical and thermomechanical characteristics, resistance to ultraviolet radiation (UV-vis), and chemical resistance properties. The properties of the obtained materials were characterized using physical-chemical research methods. The changes in the properties of the composites for MWCNT content of 0.1, 0.3, and 0.5 wt % were determined. The results showed positive influences on the thermomechanical and mechanical properties of nanocomposites without significant deterioration of their gloss. Too much CNT added to the resin leads to heterogeneity of the composite structure.
Collapse
Affiliation(s)
- Przemysław Pączkowski
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| | - Nadiia V. Sigareva
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Borys M. Gorelov
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Mariia I. Terets
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
| | - Yurii I. Sementsov
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
- Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Kechuang Building, N777 Zhongguan Road, Ningbo 315211, China
- Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| | - Mykola T. Kartel
- O. O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (N.V.S.); (B.M.G.); (M.I.T.); (Y.I.S.); (M.T.K.)
- Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Kechuang Building, N777 Zhongguan Road, Ningbo 315211, China
- Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| | - Barbara Gawdzik
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| |
Collapse
|
3
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
4
|
Gkaravela A, Vareli I, Bekas DG, Barkoula NM, Paipetis AS. The Use of Electrochemical Impedance Spectroscopy as a Tool for the In-Situ Monitoring and Characterization of Carbon Nanotube Aqueous Dispersions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4427. [PMID: 36558280 PMCID: PMC9786001 DOI: 10.3390/nano12244427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
So far, there is no validated technology for characterizing the dispersion and morphology state of carbon nanotubes (CNTs) aqueous dispersions during sonication. Taking advantage of the conductive nature of CNTs, the main hypothesis of the current study is that Electrochemical Impedance Spectroscopy (EIS) is an appropriate technique for the in-situ monitoring and qualification of the dispersion state of CNTs in aqueous media. To confirm our hypothesis, we monitored the Impedance |Z| during the sonication process as a function of type CNTs/admixtures used for the preparation of the aqueous solutions and of crucial process parameters, such as the applied sonication power and duration (i.e., sonication energy). For dispersions above the percolation threshold, a drop of |Z| by approximately seven orders of magnitude was observed, followed by a linear reduction. The dramatic change in |Z| is regarded as an indication of the formation of a conductive path or destruction of an existing one during sonication and can be used to characterize the dispersion and morphology state of CNTs. The results of the EIS provide, straightforwardly and reliably, the required information to create an optimum dispersion protocol for conductive CNT suspensions. The produced dispersions are part of research focusing on the manufacturing of cement-based composite materials with advanced thermoelectric functionalities for energy harvesting. Such dispersions are not only limited to energy harvesting applications but also to applications where functionalities are introduced through the use of conductive-based suspensions.
Collapse
|
5
|
Moshfeghi R, Toghraie D. An analytical and statistical review of selected researches in the field of estimation of rheological behavior of nanofluids. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Development of artificial neural network model for predicting dynamic viscosity and specific heat of MWCNT nanoparticle-enhanced ionic liquids with different [HMIM]-cation base agents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|