1
|
Metawea R, Farag HA, El-Ashtoukhy ES, El-Latif MMA, El-Sayed EM. Ultrasounds assisted one-pot oxidative desulfurization of model fuel using green synthesized aluminum terephthalate [MIL-53(Al)]. Sci Rep 2023; 13:13728. [PMID: 37608052 PMCID: PMC10444795 DOI: 10.1038/s41598-023-40955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Oxidative desulfurization (ODS) is considered to be one of the most promising desulfurization processes as it is energy-efficient and requires mild operating conditions. In this study, a novel green synthesized Al- based metal-organic framework with high surface area has been synthesized hydrothermally using waste polyethylene terephthalate bottles (PET) as a source of terephthalic acid as an organic linker. The prepared Al based MOF have been characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The catalytic activity of the prepared Al-MOF was evaluated in the oxidative desulfurization (ODS) of both modeled and real crude oil samples. The different operating parameters (temperature, time, catalyst dose, oxidant loading and sonication) on the ODS performance have been optimized. The optimal conditions for maximum removal of thiophene from modeled oil samples were found to be 30 min, 0.5 g of catalyst and 1:3 oil to oxidant ratio. Under the optimized conditions, sulfur removal in real oil samples obtained from Alexandria petroleum company was 90%. The results revealed that, the presented approach is credited to cost-effectiveness, environmental benignity, and ease of preparation, predicting great prospects for desulfurization of fuel oils on a commercial level.
Collapse
Affiliation(s)
- Rodaina Metawea
- Alexandria Petroleum Company, Alexandria, Egypt
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Hassan A Farag
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - El-Sayed El-Ashtoukhy
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Eman M El-Sayed
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Lesafi FJ, Pogrebnaya T, King'ondu CK. Mesoporous SnO 2-MoO 3 catalyst for diesel oxidative desulfurization: Impact of the SnO 2/MoO 3 ratio on catalytic efficiency. Heliyon 2023; 9:e19202. [PMID: 37654448 PMCID: PMC10465874 DOI: 10.1016/j.heliyon.2023.e19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Vehicular SOx emissions have a huge detrimental impact on public health, catalytic converters, and the environment. Developing strategies to remove sulfur from diesel and thus safeguard the above is imperative. A series of SnO2-MoO3 mixed oxides and mono oxides MoO3 and SnO2 were prepared by soft template method, calcined at 450 °C and successfully tested in model diesel oxidative desulfurisation (ODS). The impact of the SnO2/MoO3 mole ratio (hereinafter denoted as Sn/Mo) on catalytic efficiency was investigated, among other catalytic parameters. The obtained samples were analyzed using X-ray diffraction (XRD), Raman spectrocscopy, scanning electron microscopy (SEM), N2-physisorption and titration method for acidic properties. The study demonstrates that mixing SnO2 and MoO3 improves acidic sites, crystallinity, and morphological properties of pure SnO2. The addition of MoO3 increased oxygen vacancies and the surface area of SnO2. High acidic site densities of 49.3, 47.4, and 46.7 mEqg-1 were observed for the catalysts with 2:1, 1:1, and 1:2 Sn/Mo mole ratio, respectively. The catalytic efficiency increased with an increase in Sn content with the highest catalytic efficiency of 99.8% for the dibenzothiophene (DBT) oxidation achieved in 30 min for Sn/Mo (2:1) catalyst compared to 92 and 70% for Sn/Mo 1:1 and 1:2 catalysts, respectively. The rate constant for the reaction was 0.057 min-1, which is eight times that of MoO3; 0.007 min-1 and three times that of SnO2; 0.017 min-1. The ODS mechanism utilizing the SnO2-MoO3 catalyst was proposed. The prepared SnO2-MoO3 catalyst demonstrated a high potential for industrial desulfurisation applications.
Collapse
Affiliation(s)
- Fina J. Lesafi
- Department of Materials Science and Engineering (MaSE), School of Materials, Energy, Water and Environmental Sciences (MEWES), Nelson Mandela African Institution of Science and Technology, P.O Box 447, Arusha, Tanzania
| | - Tatiana Pogrebnaya
- Department of Materials Science and Engineering (MaSE), School of Materials, Energy, Water and Environmental Sciences (MEWES), Nelson Mandela African Institution of Science and Technology, P.O Box 447, Arusha, Tanzania
| | - Cecil K. King'ondu
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
3
|
Wang X, Xu W, Zhang D, Li X, Shi J. Structural Characteristics-Reactivity Relationships for Catalytic Depolymerization of Lignin into Aromatic Compounds: A Review. Int J Mol Sci 2023; 24:ijms24098330. [PMID: 37176036 PMCID: PMC10179062 DOI: 10.3390/ijms24098330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Developing renewable biomass resources is an urgent task to reduce climate change. Lignin, the only renewable aromatic feedstock present in nature, has attracted considerable global interest in its transformation and utilization. However, the complexity of lignin's structure, uncertain linkages, stability of side chain connection, and inevitable recondensation of reaction fragments make lignin depolymerization into biofuels or platform chemicals a daunting challenge. Therefore, understanding the structural characteristics and reactivity relationships is crucial for achieving high-value utilization of lignin. In this review, we summarize the key achievements in the field of lignin conversion with a focus on the effects of the β-O-4 content, S/G ratio, lignin sources, and an "ideal" lignin-catechyl lignin. We discuss how these characteristics influence the formation of lignin monomer products and provide an outlook on the future direction of lignin depolymerization.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| |
Collapse
|
4
|
Esmaili H, Ali Hosseini S. LaMn
x
Co
1‐x
O
3
(x=0, 0.25) Perovskites: Novel Nano Catalysts for Removal of Thiophene compounds in Fuels by Catalytic and Ultrasound‐assisted Oxidative Desulfurization. ChemistrySelect 2023. [DOI: 10.1002/slct.202204509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Habib Esmaili
- Department of Applied Chemistry, Faculty of Chemistry Urmia University Urmia. 5756151818 IRAN
| | - Seyed Ali Hosseini
- Department of Applied Chemistry, Faculty of Chemistry Urmia University Urmia. 5756151818 IRAN
| |
Collapse
|
5
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Sierra-Sánchez AG. SARS-CoV-2 pharmaceutical drugs: a critical review on the environmental impacts, chemical characteristics, and behavior of advanced oxidation processes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67604-67640. [PMID: 35930148 PMCID: PMC9362221 DOI: 10.1007/s11356-022-22234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México.
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras CONACYT-IITCA, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de Mexico, C.P 03940, México
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras COMECYT. Consejo Mexiquense de Ciencia Y Tecnología COMECYT, Paseo Colón núm.: 112-A, col. Ciprés, Toluca, Estado de México, C.P. 50120, México
| | - Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| |
Collapse
|
6
|
Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Gupta Y, Zaidi Z, Sorokhaibam LG, Banerjee A. Molybdenum Chalcogenides for Photo-Oxidative Desulfurization of Liquid Fuels Under Ambient Conditions: Process Optimization, Kinetics, and Recyclability Studies. Catal Letters 2022. [DOI: 10.1007/s10562-022-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Barilla GRH, Chen CAW, Valencia MZM, Dugos NP, Choi AES. Oxidative desulfurization utilizing activated carbon supported phosphotungstic acid in the frame of ultrasonication. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2059357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, Manila, Philippines
| | | |
Collapse
|