1
|
Qin W, Yang G, Chen K, Gao Y, Li J, Lin L, Hu E, Jiang J. Enhancing volatile fatty acid production through thermal hydrolysis of food waste with surfactant additives in anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123576. [PMID: 39642841 DOI: 10.1016/j.jenvman.2024.123576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/02/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The hydrolysis phase is recognized as the bottleneck in the anaerobic conversion of food waste. This study firstly investigates an innovative surfactant-enhanced thermal hydrolysis (STH) process, using alkyl polyglucoside (APG), a bio-based surfactant, in combination with improved response surface methodology (RSM) to optimize pretreatment conditions for volatile fatty acids (VFAs) production in anaerobic digestion (AD) of food waste. The synergistic effects of the coupled technology and its impact on acid production were explored, and the contributions of the pretreatment techniques were quantified. Results show that STH significantly enhances the solubilization of organic matter and VFAs yield. Under optimal conditions (110 °C, 0.005 g APG/g TSS), fermentation time is reduced in half, and VFAs production increases to 33.72 g COD/L. Overall, this research solidifies the substantial potential of STH in improving the solubilization, hydrolysis, and VFAs production efficiency from food waste and sets the stage for its industrial-scale application in VFA production, offering valuable insights into optimizing food waste resource utilization.
Collapse
Affiliation(s)
- Weikai Qin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guodong Yang
- School of Environment, Harbin Institute of Technology, Heilongjiang Province, Harbin, 150001, China; School of Environmental Science and Engineering, South University of Science and Technology, Guangdong Province, Shenzhen, 518055, China; City Appearance and Environment Management & Service Center of Shenzhen Bao'an District, Guangdong Province, Shenzhen, 518101, China
| | - Kailun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Li W, Zhang Z, Mi S, Zhao S. Enhancing the High-Solid Anaerobic Digestion of Horticultural Waste by Adding Surfactants. Molecules 2024; 29:4061. [PMID: 39274909 PMCID: PMC11397379 DOI: 10.3390/molecules29174061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
The influence of adding surfactants on the performance of high-solid anaerobic digestion of horticultural waste was extensively investigated in batch systems. Adding Tween series and polyethylene glycol series non-ionic surfactants had positive effects on biogas production, resulting in 370.1 mL/g VS and 256.6 mL/g VS with Tween 60 and polyethylene glycol 300 at a surfactant-to-grass mass ratio of 0.20, while the biogas production of anaerobic digestion without surfactants was 107.54 mL/g VS. The optimal and economically feasible choice was adding Tween 20 at a ratio of 0.08 g/g grass in high-solid anaerobic digestion. A kinetics model reliably represented the relationship between surfactant concentration and biogas production. The mechanism of surfactants working on lignocellulose was investigated. The improvement in high-solid anaerobic digestion by adding surfactants was attributed to the interaction between lignocelluloses and surfactants and the extraction of biodegradable fractions from the porous structure. An economic analysis showed that adding Tween 20 was likely to make a profit and be more feasible than adding Tween 60 and polyethylene glycol 300. This study confirms the enhancement in biogas production from horticultural waste by adding non-ionic surfactants.
Collapse
Affiliation(s)
- Wangliang Li
- Henan Academy of Sciences, Zhengzhou 450052, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhikai Zhang
- Henan Academy of Sciences, Zhengzhou 450052, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Shuzhen Mi
- Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | | |
Collapse
|
3
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
4
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
5
|
Ravi YK, Zhang W, Liang Y. Effect of surfactant assisted ultrasonic pretreatment on production of volatile fatty acids from mixed food waste. BIORESOURCE TECHNOLOGY 2023; 368:128340. [PMID: 36400272 DOI: 10.1016/j.biortech.2022.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, the potential effect of surfactant assisted ultrasonic pretreatment on mixed food waste was investigated. Surfactants, such as Rhamnolipid, Sodium dodecyl sulfate; Glucopon and Triton X 100 were evaluated in this work. Among them, the maximum solubilization of chemical oxygen demand of 45.5 % and the highest release of soluble COD of 31 g/L were observed for ultrasonication assisted by Triton X 100 at a dose of 0.01 g/g TS in 30 min. The presence of a surfactant also reduced 27.5 % of energy demand when compared to ultrasonic pretreatment alone. Compared to the non-pretreated samples after anaerobic digestion, ultrasonication assisted by Triton X 100 led to 95 % increase of volatile fatty acid titers and 83 % increase of carbon conversion efficiency. Thus, sonication with the addition of Triton X 100 was proven to be highly effective toward increasing digestibility of and yield of volatile fatty acid from mixed food waste.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
6
|
Karishma S, Saravanan A, Senthil Kumar P, Rangasamy G. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges. BIORESOURCE TECHNOLOGY 2022; 366:128187. [PMID: 36309177 DOI: 10.1016/j.biortech.2022.128187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The production of chemicals and energy from sustainable biomass with an important objective decreasing carbon impressions has recently become one of the key areas of attention. Algae biomass have been recognized and researched as a potential renewable biomass of biohydrogen production attributed to their limited multiplying time, fast growing qualities and ability of lipid accumulation. This review additionally envelops various key perspectives such as composition and properties of algae biomass and pretreatment strategies such as physical, chemical and biological methods adopted for the algae biomass. This review is mainly focused on pretreatment strategies which have been developed to enhance biohydrogen production. The present review deals with methods and mechanism, enzymes involved and factors influencing on biohydrogen production which help to grasp various bottlenecks, challenges and constraints. Finally, the significant progressions and economical perspective on improving biohydrogen yield because of the expansion of co-substrates and the current trends are examined.
Collapse
Affiliation(s)
- S Karishma
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
7
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
8
|
Zhu JJ, Xia H, Son Y, Wu X, Tao Y, Anandan S. Special issue on "sonochemistry in asia 2021″. ULTRASONICS SONOCHEMISTRY 2022; 87:106050. [PMID: 35667951 PMCID: PMC9237347 DOI: 10.1016/j.ultsonch.2022.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
9
|
Kholany M, Coutinho JAP, Ventura SPM. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules 2022; 27:2540. [PMID: 35458744 PMCID: PMC9030877 DOI: 10.3390/molecules27082540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Microalgae have an outstanding capacity to efficiently produce value-added compounds. They have been inspiring researchers worldwide to develop a blue biorefinery, supporting the development of the bioeconomy, tackling the environmental crisis, and mitigating the depletion of natural resources. In this review, the characteristics of the carotenoids produced by microalgae are presented and the downstream processes developed to recover and purify them are analyzed, considering their main applications. The ongoing activities and initiatives taking place in Portugal regarding not only research, but also industrialization under the blue biorefinery concept are also discussed. The situation reported here shows that new techniques must be developed to make microalgae production more competitive. Downstream pigment purification technologies must be developed as they may have a considerable impact on the economic viability of the process. Government incentives are needed to encourage a constructive interaction between academics and businesses in order to develop a biorefinery that focuses on high-grade chemicals.
Collapse
Affiliation(s)
| | | | - Sónia P. M. Ventura
- Chemistry Department, CICECO-Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.K.); (J.A.P.C.)
| |
Collapse
|