1
|
Su W, Chen X, Wei W, Kou Y, Deng C, Lin H, Chen Y, Xu Q, Wu L, Zhu C, Tong Z, Xu C, Jiang J. Occurrence of White Flesh Color and Refreshing Flavor Following Phytoene Synthase 2A Gene Variation in Loquat Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10531-10544. [PMID: 40233287 PMCID: PMC12046595 DOI: 10.1021/acs.jafc.4c11968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Loquat fruits from the apple tribe of Rosaceae ripen from late spring to early summer, when most fresh fruits are out of season. Compared with the orange-fleshed varieties, the white-fleshed varieties are usually preferentially chosen by consumers for a more favorable flavor. Though the breeding of white-fleshed cultivars with large fruit size greatly promoted the development of loquat production, the mechanisms of how fruits with lighter pigments are generated and how fruit flavor changes following flesh color shifting remain to be elucidated. Pigment measurements indicated carotenoids as the dominant pigment underlying the change in flesh color changing. Genotyping and haplotyping of 807 loquat accessions revealed that the rise of PSY2Ad-PSY2Ad genotype blocks carotenoids accumulation and confers to white flesh color of loquat fruit. Analysis of widely targeted metabolomes on 18 representative cultivars identified 1420 metabolites, with 223 differentially accumulated metabolites between the two groups. Further metabolite comparison demonstrated that low levels of bitter or astringent compounds, such as flavonoids, lignans and coumarins, phenolic acids, nucleotides, alkaloids, and terpenoids, may confer to a refreshing flavor of white-fleshed fruits. Furthermore, 18 metabolic biomarkers were identified by machine learning to distinguish fruits with diverse flesh colors. This work gives insights into the understanding of how fruit color variation associated with flavor and also promotes white-fleshed loquat breeding by genus-wide genotyping.
Collapse
Affiliation(s)
- Wenbing Su
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Xiuping Chen
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Weilin Wei
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Yidan Kou
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Chaojun Deng
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Han Lin
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Yongping Chen
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Qizhi Xu
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Lulu Wu
- Zhejiang
Key Laboratory of Horticultural Crop Quality Improvement/State Agriculture
Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changqing Zhu
- Zhejiang
Key Laboratory of Horticultural Crop Quality Improvement/State Agriculture
Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhihong Tong
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| | - Changjie Xu
- Zhejiang
Key Laboratory of Horticultural Crop Quality Improvement/State Agriculture
Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jimou Jiang
- Fujian
Breeding Engineering Technology Center for Longan and Loquat, Fruit
Research Institute, Fujian Academy of Agricultural
Science, Fuzhou 350013, China
| |
Collapse
|
2
|
Liu C, Xu H, Wang P, Li Y, Yi X, Tu Y. Syringin: Plant Source, Traditional Uses, Anti-Cancer, Brain Protection, and Related Pharmacological Properties. Chem Biodivers 2025; 22:e202402272. [PMID: 39552511 DOI: 10.1002/cbdv.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Traditional herbal medicines, containing syringin in different parts of the world, have been used to enhance memory, relieve pain, cough, clear fever, treat psoas tension, tonsillitis, sore throat, acute gastroenteritis, and anti-inflammatory, analgesic, and so on. In this article, the extraction, analytical method, pharmacological action, and research progress of syringin-containing plants were reviewed. Various extraction methods and detection methods of syringin were summarized, especially the ultrasonic-assisted extraction and high-performance liquid chromatography, which were recommended for the extraction and determination of syringin. We spotlighted the anti-cancer, brain-protective, and anti-inflammatory pharmacological effects of syringin. An in-depth analysis of four plants contains syringin-Eleutherococcus senticosus, Codonopsis pilosula, Daphne tangutica Maxim, and Syringa reticulata subsp. amurensis. In addition, the safety and efficacy of these four plants and preparations containing syringin (Shugan Jieyu Capsule, compound Coginseng tablet, hyoscyamine ointment, and Qinfenghong Zhike capsule) were analyzed. Although syringin has been widely used in traditional medicine, its specific mechanism of action and clinical efficacy are still not completely understood, and further research is needed to explore and verify it. This study provides a valuable theoretical basis and potential research direction for the research and development of new drugs such as anti-cancer and brain protection.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Huijuan Xu
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Peng Wang
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Yafan Li
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Xiangrui Yi
- School of Food and Bioengineering, Xihua University, Chengdu, P. R. China
| | - Ya Tu
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
3
|
Yang X, Yang Y, Zhang K, Zhao R, Tian H, Yang L, Zhao X. Homogenization-circulating ultrasound in combination with aqueous enzymatic pretreatment for microwave-assisted extraction of kernel oil and essential oil from the fruit of Litsea cubeba. ULTRASONICS SONOCHEMISTRY 2024; 111:107093. [PMID: 39395223 PMCID: PMC11732757 DOI: 10.1016/j.ultsonch.2024.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Homogenization-circulating ultrasound in combination with an aqueous enzymatic pretreatment microwave-assisted extraction (HCUEPM) technique was successfully applied to extract kernel oil and essential oil from Litsea cubeba fruits. After screening the types and concentrations of enzymes, a 3 % pectinase aqueous solution was chosen. The Plackett-Burman design was used to screen eight parameters that might affect the yield of kernel oil and essential oil to identify significant variables. The best conditions were then predicted by further optimizing statistically significant factors via the Box-Behnken design. The optimal conditions were as follows: stirring speed of 1000 r/min, environmental pH of 5, homogenization time of 4 min, duty cycle of 20 %, ultrasound irradiation power of 400 W, incubation temperature of 52.78 °C, liquid-solid ratio of 9.31 mL/g, and incubation time of 2.53 h. Three parallel experiments were conducted under these conditions, yielding actual kernel oil at 240.56 ± 11.07 mL/kg DW and essential oil at 64.89 ± 3.1 mL/kg DW, which are close to the theoretical values. Compared with the HCUEPM method, the homogenization-microwave-assisted hydrodistillation (HMHD) method yielded 65.63 ± 3.2 mL/kg DW of essential oil but could not extract kernel oil. These findings demonstrate that the HCUEPM used in this study can efficiently extract a significant amount of kernel oil and essential oil from L. cubeba fruits in a short period of time. GC-MS analysis of the kernel oil and essential oil extracted via different methods revealed no significant differences in composition. The main components of the essential oil were D-limonene, trans-citral, cis-citral, and citronellal. The main components of the kernel oil were C10 and C12 medium-chain fatty acids, laying the foundation for the potential application of L. cubeba kernel oil and essential oil in the field of human health.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yang Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ru Zhao
- Key Laboratory of Quality and Safety of Agricultural Products of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Hao Tian
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Lei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Pei C, Shen Z, Wu Y, Zhao S, Wang Y, Shi S, Huang D, Jia N, Liu J, Wang X, He Y, Wang Z. Eleutheroside B Pretreatment Attenuates Hypobaric Hypoxia-Induced High-Altitude Pulmonary Edema by Regulating Autophagic Flux via the AMPK/mTOR Pathway. Phytother Res 2024; 38:5657-5671. [PMID: 39307910 DOI: 10.1002/ptr.8333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/22/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
High-altitude pulmonary edema (HAPE) is a life-threatening disease, and autophagy deficiency is implicated in the pathogenesis of HAPE. Eleutheroside B (EB), which is the main bioactive component of Acanthopanax senticosus, exhibits various pharmacological activities. Our previous research demonstrated that autophagic structures were widely found in the ultrastructure of lung tissue in HAPE rats. However, whether EB regulates autophagy deficiency in HAPE remains unknown. This study aimed to investigate the protective effects of EB on hypobaric hypoxia-induced HAPE and explore the underlying molecular mechanism of regulating autophagy. The rat model of high-altitude pulmonary edema was replicated using a hypobaric hypoxic chamber. Rats were pretreated with EB or in combination with chloroquine or compound C. The pulmonary edema was assessed by the lung wet/dry ratio, total protein concentration in bronchoalveolar lavage fluid, and histological analysis. Inflammation and oxidative stress were measured using commercial biochemical kits. Autophagy and autophagic flux were evaluated by western blotting, transmission electron microscopy, and adeno-associated virus-mRFP-GFP-labeled tandem fluorescence LC3. The AMPK/mTOR signaling pathway was detected by western blotting. EB alleviated hypobaric hypoxia-induced pulmonary edema, hypoxemia, acid-base imbalance in the blood, inflammation, and oxidative stress in a dose-dependent manner. EB restored impaired autophagic flux by activating the AMPK/mTOR signaling pathway. However, chloroquine or compound C abolished eleutheroside B-mediated autophagy flux restoration. EB has the potential to restore impaired autophagic flux in the lung of hypobaric hypoxia-induced HAPE rats, which could be attributed to the activation of AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang X, Guan L, Zhu L, Wang K, Gao Y, Li J, Yan S, Ji N, Zhou Y, Yao X, Li B. A review of the extraction and purification methods, biological activities, and applications of active compounds in Acanthopanax senticosus. Front Nutr 2024; 11:1391601. [PMID: 38846546 PMCID: PMC11153764 DOI: 10.3389/fnut.2024.1391601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Acanthopanax senticosus (AS) is a geo-authentic crude medicinal plant that grows in China, Korea, Russia, and Japan. AS contains bioactive compounds such as eleutherosides, polysaccharides, and flavonoids. It is also a key traditional herb in the Red List of Chinese Species. AS is mainly distributed in Northeast China, specifically in Heilongjiang, Jilin, and Liaoning provinces. Its active compounds contribute to significant biological activities, including neuroprotective, antioxidant, anti-fatigue, and antitumor effects. However, the extraction methods of active compounds are complex, the extraction efficiency is poor, and the structure-activity relationship is unclear. This study focused on the nutrients in AS, including protein, carbohydrates, and lipids. Particularly, the active ingredients (eleutherosides, polysaccharides, and flavonoids) in AS and their extraction and purification methods were analyzed and summarized. The biological activities of extracts have been reviewed, and the mechanisms of anti-oxidation, antitumor, anti-inflammation, and other activities are introduced in detail. The applications of AS in various domains, such as health foods, medicines, and animal dietary supplements, are then reported. Compared with other extraction methods, ultrasonic or microwave extraction improves efficiency, yet they can damage structures. Challenges arise in the recovery of solvents and in achieving extraction efficiency when using green solvents, such as deep eutectic solvents. Improvements can be made by combining extraction methods and controlling conditions (power, temperature, and time). Bioactive molecules and related activities are exposited clearly. The applications of AS have not been widely popularized, and the corresponding functions require further development.
Collapse
Affiliation(s)
- Xindi Zhang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Lijun Guan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ling Zhu
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Kunlun Wang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Yang Gao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Jialei Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Song Yan
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Nina Ji
- Soybean Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ye Zhou
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xinmiao Yao
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Bo Li
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| |
Collapse
|
6
|
Shi C, Liang Z, Li T, Hao Q, Xiang H, Xie Q. Metabolome and microbiome analyses of the anti-fatigue mechanism of Acanthopanax senticosus leaves. Food Funct 2024; 15:3791-3809. [PMID: 38511300 DOI: 10.1039/d3fo05311c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Acanthopanax senticosus leaves, widely used as a vegetable and tea, are reported to be beneficial in treating neurological disorders. At present, their anti-fatigue effect remains to be established. In this study, we analyzed the composition of the extracts from A. senticosus leaves and confirmed their antioxidant and anti-inflammatory properties at the cellular level. In mice subjected to exhaustive running on a treadmill, supplementation with A. senticosus leaf extracts enhanced exercise performance and alleviated fatigue via the reversal of exercise-induced 5-HT elevation, metabolic waste accumulation, organ damage, and glucose metabolism-related gene expression. The collective findings from microbiome and metabolomic analyses indicate that A. senticosus leaf extracts increase α-diversity, regulate microbial composition, and reverse exercise-mediated disruption of carbohydrate, creatine, amino acid, and trimethylamine metabolism. This study provides preliminary evidence for the utility of A. senticosus leaves as a promising anti-fatigue food and offers insights into the underlying mechanism.
Collapse
Affiliation(s)
- Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Zehua Liang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Ting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Qi Hao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, P.R. China
| |
Collapse
|
7
|
Zhou YX, Luo WJ, Zhou TT, Zhou Y, Li HL, Sun F, Ge YW, Piao XH. Precursor ions-guided comprehensive profiling of triterpenoid saponins from the Eleutherococcus senticosus stems and their neuroprotective effect evaluation. J Pharm Biomed Anal 2024; 238:115849. [PMID: 37979523 DOI: 10.1016/j.jpba.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Triterpenoid saponins (TS) are the main constituents of Eleutherococcus senticosus, also termed as Siberian ginseng or Ciwujia, a widely used herb in China, Japan, Korea, and Russia for its beneficial effects on memory enhancement, tonifying, heart-nourishing, and tranquilizing. Although the stems, rhizomes, and roots are used identically, a preliminary experiment found TS were specifically distributed in stems rather than the underground parts. However, a comprehensive profiling of the TS compounds in E. senticosus stems (ESS) is still absent. In this study, an MS/MS molecular networking (MN)-based precursor ions (PIs) discovery strategy was applied to fast track the TS compounds from ESS extract. A total of 80 TS were tracked and characterized, among which 78 ones were reported for the first time in ESS. Furthermore, the TS-rich fraction (ESS-TS) was prepared by a series of chromatography separation, and was found with significant neuralprotective effects on attenuating Aβ25-35-induced neurite atrophy, and promoting the outgrowth of damaged neurite in the Aβ25-35-induced primary cortical neuronal damage model. In conclusion, this study highlighted the existence of TS compounds in ESS, a major medicinal parts nowadays adopted as Ciwujia by the Chinese Pharmacopiea and market. In addition, the TS was found with determined roles in the outgrowth of neuritis, and was proposed as crucial constituent when the E. senticosus was used as the therapeutic agents for neural diseases. These results supplies scientific data for the quality control of E. senticosus and the further development of ESS-TS as memory enhancement agents.
Collapse
Affiliation(s)
- Ying-Xin Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jie Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian-Tian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|