1
|
Sriram B, V AS, Wang SF, P J, George M. Sustainable Natural Deep Eutectic Solvent-Mediated Synthesis of Magnesium Zirconate Nanoparticles: A Photocatalyst for the Degradation of Anti-Viral Drug. Inorg Chem 2024; 63:20705-20713. [PMID: 39393015 PMCID: PMC11523255 DOI: 10.1021/acs.inorgchem.4c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The anti-viral drug hydroxychloroquine (HCQ) has captivated significant interest in the pharmaceutical field, as it is a quinolone derivative. Its unrestrained occurrence causes prominent health hazards owing to its persistent, carcinogenic, recalcitrant, and teratogenic nature. Herein, in this work, an experimental investigation was carried out toward the photocatalytic degradation of HCQ drug using magnesium zirconate (MgZrO3) nanoparticles as an effective photocatalyst. A comprehensive characterizations of the as-synthesized material was carried out. The photocatalytic degradation of the HCQ drug was examined with various sources of light energies. The obtained outcomes indicated that ±85% of HCQ was degraded using a MgZrO3 photocatalyst within 30 min of the reaction time under UV-visible (ultraviolet) light irradiation. Further, other significant operational parameters such as various catalyst dosages, HCQ concentrations, pH, scavengers, and salts were examined. The degradation studies revealed that the reaction followed pseudo-first-order kinetics. Hence, this perovskite-type MgZrO3 has grasped profound attention in environmental remediation, significantly in photocatalytic degradation of HCQ drug. This comprehensive research offers green synthesis strategy as a substantial framework for providing effective photocatalyst that addresses contemporary water pollution issues linked to notable results. This aids in targeting era-driven advancements toward a clean and safe future environment.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Jackulinflora P
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Mary George
- Department
of Chemistry, Stella Maris College, Affiliated
to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
2
|
Tang J, Cheng Z, Zhang X, Sun J, Liu Z, Zhang H, Tan S, Qiu F. Continuous ultrasonic ozone coupling technology-assisted control of ceramic membrane fouling coupled enhanced multiphase mixing to treat dye wastewater and CFD flow field simulation. ULTRASONICS SONOCHEMISTRY 2024; 104:106839. [PMID: 38452711 PMCID: PMC10924065 DOI: 10.1016/j.ultsonch.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In this study, ozone catalysts (hydrogenation-modified red mud, HM-RM) successfully prepared by hydrogenation-modification of industrial hazardous solid waste red mud (RM) as a raw material in accordance with the viewpoint of treating waste with waste and using waste. Meanwhile, as for the common phenomenon of membrane fouling, uneven distribution of multiphase solid catalysts and ozone in liquids, the addition of ultrasound can not only disperse materials, but also play a role in online cleaning of ceramic membranes and catalysts. The optimum treatment conditions for Rhodamine B (RhB) solution with volume of 2 L and concentration of 40 mg/L were catalyst concentration of 0.4 mg/L, reaction temperature of 45 °C, ultrasonic time of 1 h, ultrasonic intensity of 600 W, removal rate of RhB was up to 90 %. In addition, the computational fluid dynamics (CFD) simulation method was used to investigate the fluid flow between the two gas-liquid phases and the effect of the negative pressure of the membrane pump on the fluid by the analysis of flow, pressure and ozone flux of the ceramic membrane(CM) reaction apparatus. The CFD simulation results showed that at the inlet gas-liquid flow rate of 3 m/s and the negative pressure of 20,000 Pa, the maximum flow rates of CM-1 were 3 m/s, 0.752 m/s for CM-2, and 0.228 m/s for CM-3, respectively. Vortices, which are beneficial to solid-liquid mixing and gas-liquid mass transfer, formed between the suction port CM-1 of CM-1 and the inlets of CM-2 and CM-3. This discovery is consistent with relevant experimental research results. Significantly higher concentrations of both •OH and dissolved ozone were observed in the US/HM-RM/O3 system compared to other systems, indicating the significant improvement in ozone utilization rate through the application of ultrasound. The superiority of the US/HM-RM/O3 device was demonstrated. The real dye effluent was tested under optimum operating conditions and the results showed that COD and TOC were reduced by 81.34 % and 60.23 % respectively after 180 min of treatment. The above research can provide technical support for the treatment of dye wastewater using Ultrasound-enhanced ozone oxidation ceramic membranes.
Collapse
Affiliation(s)
- Jinshan Tang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Xuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jinyu Sun
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhaoqiang Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Shengmei Tan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
3
|
Bendjeffal H, Mamine H, Boukachabia M, Aloui A, Metidji T, Djebli A, Bouhedja Y. A Box-Behnken design-based chemometric approach to optimize the sono-photodegradation of hydroxychloroquine in water media using the Fe(0)/S 2O 82-/UV system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22453-22470. [PMID: 38407707 DOI: 10.1007/s11356-024-32596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The huge utilization of hydroxychloroquine in autoimmune infections led to an abnormal increment in its concentration in wastewater, which can pose a real risk to the environment, necessitating the development of a pretreatment technique. To do this, we are interested in researching how hydroxychloroquine degrades in contaminated water. The main goal of this investigation is to optimize the operating conditions for the sono-photodegradation of hydroxychloroquine in water using an ultrasound-assisted Fe(0)/S 2 O 8 2 - /UV system. To get adequate removal of HCQ, a chemometric method based on the Box-Behnken design was applied to optimize the influence of the empirical parameters selected, including Fe(0) dose,S 2 O 8 2 - concentration, pH, and initial HCQ concentration. The quadratic regression model representing the HCQ removal rate (η(%)) was evolved and validated by ANOVA. The optimal conditions as a result of the above-mentioned trade-off between the four input variables, with η(%) as the dependent output variable, were captured using RSM methodology and the composite desirability function approach. For HCQ full decomposition, the optimal values of the operating factors are as follows:S 2 O 8 2 - dose, 194.309 mg/L; Fe(0) quantity, 198.83 mg/L; pH = 2.017, and HCQ initial dose of 296.406 mg/L. Under these conditions, the HCQ removal rate, achieved after 60 min of reaction, attained 98.95%.
Collapse
Affiliation(s)
- Hacene Bendjeffal
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria.
| | - Hadjer Mamine
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Mourad Boukachabia
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Amel Aloui
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Toufek Metidji
- LTEVI Laboratry, Badji Mokhtar-Annaba University, Annaba, Algeria
| | | | - Yacine Bouhedja
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
4
|
Wang G, Cheng H. Recyclable MXene-bridged Z-scheme NiFe 2O 4/MXene/Bi 2WO 6 heterojunction with enhanced charge separation for efficient sonocatalytic removal of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165833. [PMID: 37517721 DOI: 10.1016/j.scitotenv.2023.165833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Sonocatalysis has emerged as a promising technology for addressing environmental pollution issues. However, the efficacy of sonocatalytic processes is primarily hindered by challenges related to the sluggish flow rate of photogenerated electrons. This study presents a novel approach to address this issue by developing an improved Z-scheme NiFe2O4/MXene/Bi2WO6 (NMB) composite that exhibits exceptional sonocatalytic activity for ciprofloxacin (CIP) degradation. In particular, the NiFe2O4/MXene (5 wt%)/Bi2WO6 composite could achieve high CIP (at 10 mg/L) degradation efficiency (97.39 %) after 60 min of ultrasonic irradiation. The exceptional sonocatalytic activity of the composite was attributed to the synergistic interaction of the Z-scheme heterojunction charge transfer route and the electron mediator of Ti3C2-MXene, which enhances light collection capacity, separates photogenerated carriers efficiently, and improves redox activity of the composite. The scavenging experiments reveal that the sonocatalytic degradation of CIP was driven by holes (h+), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-), with the former playing a dominant role. The results of reuse experiments demonstrate the outstanding sonocatalytic stability of the catalyst, as well as its uncomplicated recovery. The developed NMB Z-scheme composite shows promise for sonocatalytic treatment of antibiotics in industrial wastewaters, particularly those with high turbidity and/or low transparency. The findings also open up avenues for developing efficient and cost-effective sonocatalysts with good recyclability and remarkable performance.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
5
|
Xie K, Hao W, Xu K, Xu S, Lin JB, Wei Z, Zhang J. Boosting the sonophotocatalytic performance of BiOCl by Eu doping: DFT and an experimental study. ULTRASONICS SONOCHEMISTRY 2023; 99:106543. [PMID: 37542753 PMCID: PMC10430592 DOI: 10.1016/j.ultsonch.2023.106543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Bismuth oxychloride (BiOCl) has a unique layered structure and uneven charge distribution, resulting in an internal electric field under polarization, which promotes the efficient separation and migration of photogenerated carriers. BiOCl could be a candidate for sonophotocatalysts. However, the low utilization of visible light limits the application of BiOCl in photocatalysts. In this study, the photocatalytic performance of rare earth element (Nd, Sm, Eu, Er and Er)-doped BiOCl was studied by density functional theory (DFT) and experimentally to screen high-performance catalysts. The band structure, density of states, and optical properties were calculated by the DFT method to predict the photocatalytic activity of rare earth-doped BiOCl. The built-in electric field formed in Eu-doped BiOCl inhibiting electron and hole recombination can be observed. Subsequently, the activity of the photocatalyst and sonophotocatalysts was evaluated. The results show that the photocatalytic and sonophotocatalytic activity of Eu-doped BiOCl is improved, which is consistent with the theoretical prediction. Combining theoretical calculations with experiments, the sonophotocatalytic activity of Eu-doped BiOCl is enhanced, mainly due to the synergistic effect of inhibiting carrier recombination, and expansion to the visible light absorption region.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; China Oilfield Services Limited, Tianjin 300459, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Zheng Wei
- Henan Academy Institute of Traditional Chinese Medicine, Zhengzhou 45000, China
| | - Junping Zhang
- Henan Academy Institute of Traditional Chinese Medicine, Zhengzhou 45000, China.
| |
Collapse
|
6
|
Mouloua D, Lejeune M, Rajput NS, Kaja K, El Marssi M, El Khakani MA, Jouiad M. One-step chemically vapor deposited hybrid 1T-MoS 2/2H-MoS 2 heterostructures towards methylene blue photodegradation. ULTRASONICS SONOCHEMISTRY 2023; 95:106381. [PMID: 37004414 PMCID: PMC10457596 DOI: 10.1016/j.ultsonch.2023.106381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS2) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique. We demonstrate that the 1T-MoS2/2H-MoS2 heterostructures exhibited a narrow bandgap ∼ 1.7 eV, and a very low reflectance (<5%) under visible-light, owing to their particular vertical micro-flower-like structure. We exfoliated the CVD-synthesised 1T-MoS2/2H-MoS2 films to assess their photodegradation properties towards the standard methylene blue dye. Our results showed that the photo-degradation rate-constant of the 1T-MoS2/2H-MoS2 heterostructures is much greater under UV excitation (i.e., 12.5 × 10-3 min-1) than under visible light illumination (i.e., 9.2 × 10-3 min-1). Our findings suggested that the intermixing of the conductive 1T-MoS2 with the semi-conducting 2H-MoS2 phases favors the photogeneration of electron-hole pairs. More importantly, it promotes a higher efficient charge transfer, which accelerates the methylene blue photodegradation process.
Collapse
Affiliation(s)
- D Mouloua
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France; Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada
| | - M Lejeune
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - N S Rajput
- Advanced Materials Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - K Kaja
- Laboratoire National de métrologie et d'essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France
| | - M El Marssi
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - M A El Khakani
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada.
| | - M Jouiad
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France.
| |
Collapse
|
7
|
Zhang K, Zhang J, He X, Zhao Y, Zada A, Peng A, Qi K. Fe 3O 4@MIL-100(Fe) modified ZnS nanoparticles with enhanced sonocatalytic degradation of tetracycline antibiotic in water. ULTRASONICS SONOCHEMISTRY 2023; 95:106409. [PMID: 37099855 PMCID: PMC10149504 DOI: 10.1016/j.ultsonch.2023.106409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Sonocatalysis has attracted excellent research attention to eradicate hazardous pollutants from the environment effectively. This work synthesised an organic/inorganic hybrid composite catalyst by coupling Fe3O4@MIL-100(Fe) (FM) with ZnS nanoparticles using the solvothermal evaporation method. Remarkably, the composite material delivered significantly enhanced sonocatalytic efficiency for removing tetracycline (TC) antibiotics in the presence of H2O2 compared to bare ZnS nanoparticles. By adjusting different parameters such as TC concentration, catalyst dosage and H2O2 amount, the optimized composite (20 %Fe3O4@MIL-100(Fe)/ZnS) removed 78.25% antibiotic in 20 min at the cost of 1 mL of H2O2. These much superior activities are attributed to the efficient interface contact, effective charge transfer, accelerated transport capabilities and strong redox potential for the superior acoustic catalytic performance of FM/ZnS composite systems. Based on various characterization, free radical capture experiments and energy band structures, we proposed a mechanism for the sonocatalytic degradation of tetracycline based on S-scheme heterojunctions and Fenton like reactions. This work will provide an important reference for developing ZnS-based nanomaterials to study sonodegradation of pollutants.
Collapse
Affiliation(s)
- Kai Zhang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000, China
| | - Jingjing Zhang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Xue He
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Yue Zhao
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Anzhong Peng
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| |
Collapse
|
8
|
Zhang J, Zhao Y, Zhang K, Zada A, Qi K. Sonocatalytic degradation of tetracycline hydrochloride with CoFe 2O 4/g-C 3N 4 composite. ULTRASONICS SONOCHEMISTRY 2023; 94:106325. [PMID: 36801673 PMCID: PMC9945770 DOI: 10.1016/j.ultsonch.2023.106325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 02/08/2023] [Indexed: 05/23/2023]
Abstract
In this work, different mass percent ratios of CoFe2O4 coupled g-C3N4 (w%-CoFe2O4/g-C3N4, CFO/CN) nanocomposites were integrated through a hydrothermal process for the sonocatalytic eradication of tetracycline hydrochloride (TCH) from aqueous media. The prepared sonocatalysts were subjected to various techniques to investigate their morphology, crystallinity, ultrasound wave capturing activity and charge conductivity. From the investigated activity of the composite materials, it has been registered that the best sonocatalytic degradation efficiency of 26.71 % in 10 min was delivered when the amount of CoFe2O4 was 25% in the nanocomposite. The delivered efficiency was higher than that of bare CoFe2O4 and g-C3N4. This enriched sonocatalytic efficiency was credited to the accelerated charge transfer and separation of e--h+ pair through the S-scheme heterojunctional interface. The trapping experiments confirmed that all the three species i.e. •OH, h+ and •O2- were involved in the eradication of antibiotics. A strong interaction was shown up between CoFe2O4 and g-C3N4 in the FTIR study to support charge transfer as confirmed from the photoluminescence and photocurrent analysis of the samples. This work will provide an easy approach for fabricating highly efficient low-cost magnetic sonocatalysts for the eradication of hazardous materials present in our environment.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Yue Zhao
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Kai Zhang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000 China; College of Science and Technology, Hebei Agricultural University, Cangzhou 061100 China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| |
Collapse
|
9
|
Alimohamadi M, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Catalytic activation of hydrogen peroxide by Cr 2AlC MAX phase under ultrasound waves for a treatment of water contaminated with organic pollutants. ULTRASONICS SONOCHEMISTRY 2023; 93:106294. [PMID: 36640461 PMCID: PMC9852641 DOI: 10.1016/j.ultsonch.2023.106294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the sonocatalytic activation of hydrogen peroxide (H2O2) using Cr2AlC MAX phase prepared by the reactive sintering process. The hexagonal structure of the crystalline MAX phase was confirmed by X-ray diffraction. Moreover, the compacted layered structure of the MAX phase was observed via scanning electron microscopy and high-resolution transmission electron microscopy. Under the desired operating conditions, Cr2AlC MAX phase (0.75 g/L) showed suitable potential to activate H2O2 (1 mmol/L) under sonication, thereby allowing a considerable removal efficiency for various organic pollutants, including dimethyl phthalate (69.1%), rifampin (94.5%), hydroxychloroquine (100%), and acid blue 7 (91.5%) with initial concentration of 15 mg/L within 120 min of treatment. Kinetic analysis proved that the degradation reaction followed pseudo-first-order kinetics. Scavenging tests demonstrated that hydroxyl radicals and singlet oxygen were effective species during degradation. Furthermore, a probable mechanism for dimethyl phthalate degradation was suggested according to gas chromatography-mass spectroscopy and nuclear magnetic resonance analyses. The obtained results confirmed the capability of the triple Cr2AlC/H2O2/US process as a promising method for treating contaminated water.
Collapse
Affiliation(s)
- Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004 Jinhua, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
10
|
Haddadi S, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Titanium-based MAX-phase with sonocatalytic activity for degradation of oxytetracycline antibiotic. ULTRASONICS SONOCHEMISTRY 2023; 92:106255. [PMID: 36502683 PMCID: PMC9763513 DOI: 10.1016/j.ultsonch.2022.106255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 05/27/2023]
Abstract
In light of growing environmental concerns over emerging contaminants in aquatic environments, antibiotics in particular, have prompted the development of a new generation of effective sonocatalytic systems. In this study, a new type of nano-laminated material, Ti2SnC MAX phase, is prepared, characterized, and evaluated for the sonocatalytic degradation of oxytetracycline (OTC) antibiotic. A variety of identification analyses, including X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, Brunauer-Emmett-Teller, and diffuse reflectance spectroscopy, were conducted to determine the physicochemical properties of the synthesized catalyst. By optimizing the operating factors, total degradation of OTC occurs within 120 min with 1 g L-1 catalyst, 10 mg L-1 OTC, at natural pH of 7.1 and 150 W ultrasonic power. The scavenger studies conclude that the singlet oxygen and superoxide ions are the most active species during the sonocatalytic reaction. Based on the obtained data and GC-MS analysis, a possible sonocatalytic mechanism for the OTC degradation in the presence of Ti2SnC is proposed. The catalyst reusability within eight consecutive runs reveals the proper stability of Ti2SnC MAX phase. The results indicate the prospect for MAX phase-based materials to be developed as efficient sonocatalysts in the treatment of antibiotics, suggesting a bright future for the field.
Collapse
Affiliation(s)
- Samira Haddadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|