1
|
Guo L, Qiao J, Huo J, Rupasinghe HV. Plant iridoids: Chemistry, dietary sources and potential health benefits. Food Chem X 2025; 27:102491. [PMID: 40336984 PMCID: PMC12056409 DOI: 10.1016/j.fochx.2025.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
Iridoids, a diverse class of plant food monoterpenoids, are characterized by a cyclopentane-fused pyran ring structure and exhibit extensive structural diversity and functional versatility. This review highlights recent advances in iridoid chemistry, biosynthesis via the methylerythritol phosphate pathway, and advanced extraction techniques such as ultrasound-assisted, microwave-assisted, and supercritical fluid extraction. Analytical methods such as liquid chromatography-mass spectrometry enable precise identification and quantification, advancing the study of their health-promoting properties. Iridoids demonstrate potent antioxidant, anti-inflammatory, neuroprotective, antitumor, antiviral, and hepatoprotective effects suggesting their potential use in functional foods, nutraceuticals, pharmaceuticals, and cosmetics. However, for the successful commercialization of iridoid-based products, future research should aim at the cost-effective production of iridoids using sustainable production systems, biotechnological synthesis, and clinical validation. This review reveals the significant promise of iridoids in enhancing human health through potential product innovation and assessment.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Challana V, Kaimal AM, Shirkole S, Sahoo AK. Comparative analysis and investigation of ultrasonication on juice yield and bioactive compounds of kinnow fruit using RSM and ANN models. Sci Rep 2025; 15:9859. [PMID: 40118961 PMCID: PMC11928472 DOI: 10.1038/s41598-025-94640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Ultrasonication (US) is a promising non-thermal technique widely applied in the food sector for improving the extraction process and preserving nutrients. Kinnow fruits have yields of 40-60% juice; the rest of the parts are discarded as waste. The study explored ultrasonication (US) as a pre-treatment to improve juice expression and preserve heat-sensitive nutrients such as vitamin C. The optimization of US treatment was done by varying treatment time (30-90 min) and temperature (30-70 °C) using response surface methodology (RSM). Under optimal conditions, juice yield increased by 14.52% with 4.34% vitamin C loss. The artificial neural network (ANN) model (2-9-1 for yield and 2-10-1 for vitamin C) outperformed the RSM in terms of fitting, predictive ability and accuracy. The kinetic study further indicated that longer US treatment enhanced the total soluble solids (TSS), total phenolic content (TPC), and total color change (ΔE), whereas antioxidant activity and vitamin C content decreased. The yield followed an inverted parabola trend during the kinetic study; yield increased with a k-value of 0.0582 until 30 min and then declined until 60 min with a 0.0253 k-value. These results suggested that US technology has the potential to improve juice yield and maintain nutritional quality.
Collapse
Affiliation(s)
- Vimal Challana
- Department of Food Engineering and Technology, Institute of Chemical Technology Mumbai, ICT-IOC Campus, Bhubaneswar, 751013, India.
| | - Admajith M Kaimal
- Department of Food Engineering and Technology, Institute of Chemical Technology Mumbai, ICT-IOC Campus, Bhubaneswar, 751013, India
| | - Shivanand Shirkole
- Department of Food Engineering and Technology, Institute of Chemical Technology Mumbai, ICT-IOC Campus, Bhubaneswar, 751013, India
- Department of Food Technology, School of Engineering and Technology, D. Y. Patil Agriculture and Technical University, Talsande, Kolhapur, 416112, India
| | - Akshaya K Sahoo
- Department of Food Engineering and Technology, Institute of Chemical Technology Mumbai, ICT-IOC Campus, Bhubaneswar, 751013, India.
| |
Collapse
|
3
|
Öğüt S, Türkol M, Yıkmış S, Bozgeyik E, Abdi G, Kocyigit E, Aadil RM, Seyidoglu N, Karakçı D, Tokatlı N. Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. ULTRASONICS SONOCHEMISTRY 2025; 114:107245. [PMID: 39879805 PMCID: PMC11814703 DOI: 10.1016/j.ultsonch.2025.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
In this study, the effects of ultrasound treatment on bioactive components and functional properties of hawthorn vinegar (Crataegus tanacetifolia) were investigated. Parameters such as total phenolic compound (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH radical scavenging activity and CUPRAC reducing capacity were optimised by surface response method (RSM) and 14 min duration and 61.40 % amplitude were determined as the most suitable treatment conditions. The results showed that ultrasound treatment improved the antioxidant properties of hawthorn vinegar by increasing TPC, TFC, DPPH and CUPRAC values. In addition, it was observed that hawthorn vinegar samples exhibited anticancer effects in cell culture experiments. In experiments on A549 (lung), MCF-7 (breast) and HT-29 (colon) cancer cell lines, ultrasound-treated vinegar increased apoptotic effects, suppressed cell migration and reduced necrosis rates in some cell lines. In particular, ultrasound treatment of vinegar resulted in a reduction in the expression of anti-apoptotic genes (BCL-2 and XIAP) and an enhancement in the expression of pro-apoptotic genes (BAX). These findings suggest that ultrasound technology preserves and enhances the bioactive components of hawthorn vinegar, improves its anticancer properties and increases its potential for use as a functional food product.
Collapse
Affiliation(s)
- Selim Öğüt
- Department of Biophysics, Faculty of Medicine, Bandırma Onyedi Eylul University 10250 Bandırma, Balıkesir, Türkiye
| | - Melikenur Türkol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University 59030 Tekirdag, Türkiye.
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University 59830 Tekirdag, Türkiye.
| | - Esra Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, 02200, Adiyaman, Türkiye
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Emine Kocyigit
- Nutrition and Dietetics, Faculty of Health Sciences, Ordu University 52200 Ordu, Türkiye
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000 Pakistan
| | - Nilay Seyidoglu
- Department of Physiology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University 59030 Tekirdag, Türkiye
| | - Deniz Karakçı
- Department of Biochemistry, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University 59030 Tekirdag, Türkiye
| | - Nazlı Tokatlı
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Istanbul Health and Technology University 34421 Istanbul, Türkiye
| |
Collapse
|
4
|
Wu W, Ma X, Wang Y, Yu Y, Huo J, Huang D, Sui X, Zhang Y. Amplifying Bioactivity of blue honeysuckle (Lonicera caerulea L.) fruit puree through Ultrasonication: Antioxidant and antiproliferative activity. ULTRASONICS SONOCHEMISTRY 2025; 112:107179. [PMID: 39626565 PMCID: PMC11647649 DOI: 10.1016/j.ultsonch.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Blue honeysuckle (Lonicera caerulea L.) serves as a significant reservoir of polyphenol compounds. This impact of ultrasonication processing on the bioaccessibility of blue honeysuckle fruit puree during in vitro digestion was evaluated. The polyphenol compounds, antioxidant capacity and antiproliferative activity were measured, with a particular focus on determining the total proanthocyanidin content of the puree during digestion. The results revealed that the U300 W treatment significantly increased antioxidant content and enhanced the stability of antioxidant capacity, leading to stronger antiproliferative activity. A total of 33 compounds, including 14 phenolic acids, 5 flavanols, 1 flavanol-3-ol, 1 flavanone alcohol, 3 flavanones, 1 flavanone, and 8 non- polyphenols were found in both untreated and ultrasonicated puree during in vitro digestion. The untreated puree contained 22 compounds, while the ultrasonicated puree contained 33. Compared to untreated samples, ultrasonicated samples contained significantly higher levels of loganic acid, dihydrokaempferol, kaempferol derivatives, and plantagoside. Except for vanillic acid, citric acid, protocatechuic acid, and luteolin-4'-O-glucoside, the polyphenols showed a decreasing trend during oral-gastric-small intestinal-colon digestion. The U500 W ultrasonicated fruit puree exhibited the strongest antiproliferative activity. Overall, the results demonstrated that ultrasonication has the potential to enhance the bioaccessibility of antioxidant compounds and the antiproliferative activity of blue honeysuckle fruit puree.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiumei Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingqi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yating Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Xiaonan Sui
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, PR China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Yan W, Lu Y, Guo L, Liu Y, Li M, Zhang B, Zhang B, Zhang L, Qin D, Huo J. Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle. PLANTS (BASEL, SWITZERLAND) 2024; 13:2115. [PMID: 39124232 PMCID: PMC11314146 DOI: 10.3390/plants13152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is a deciduous shrub with perennial rootstock found in China. The objectives of this study were to explore the drought tolerance of blue honeysuckle, determine the effect of drought stress on two photosystems, and examine the mechanism of acquired drought tolerance. In this study, blue honeysuckle under four levels of simulated field capacity (100%, 85%, 75%, and 65% RH) was grown in split-root pots for drought stress treatment, for measuring the changes in chlorophyll content, photosynthetic characteristics, and leaf chlorophyll fluorescence parameters. The chlorophyll content of each increased under mild stress and decreased under moderate and severe stress. The net photosynthetic rate, transpiration rate, intercellular carbon dioxide concentration, and stomatal conductance of blue honeysuckle decreased with the increase in water stress. However, the water utilization rate and stomatal limit system increased under mild and moderate stress and decreased under severe stress. The maximum fluorescence (Fm), maximum photochemical efficiency, and quantum efficiency of photosystem II decreased with the decrease in soil water content, and the initial fluorescence increased significantly (p < 0.01). With the decrease in soil water content, the energy allocation ratio parameters decreased under severe drought stress. The main activity of the unit reaction center parameters first increased and then decreased. ABS/CSm, TRo/CSm, ETo/CSm, and REo/CSm gradually declined. After a comprehensive analysis, the highest scores were obtained under adequate irrigation (CK). Overall, we concluded that the water irrigation system of blue honeysuckle should be considered adequate.
Collapse
Affiliation(s)
- Weijiao Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Yongchuan Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Liangchuan Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Mingkai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Boyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
| | - Lijun Zhang
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Y.); (Y.L.); (L.G.); (Y.L.); (M.L.); (B.Z.); (D.Q.)
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Institute of Green Food Science, Harbin 150000, China;
| |
Collapse
|
6
|
Li B, Zhong M, Sun Y, Liang Q, Shen L, Qayum A, Rashid A, Rehman A, Ma H, Ren X. Recent advancements in the utilization of ultrasonic technology for the curing of processed meat products: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2024; 103:106796. [PMID: 38350241 PMCID: PMC10876906 DOI: 10.1016/j.ultsonch.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Curation meat products involves multiple stages, including pre-curing processing (thawing, cleaning, and cutting), curing itself, and post-curing processing (freezing, and packaging). Ultrasound are nonthermal processing technology widely used in food industry. This technology is preferred because it reduces the damages caused by traditional processing techniques on food, while simultaneously improving the nutritional properties and processing characteristics of food. The utilization of ultrasonic-assisted curing technology has attracted significant attention within the realm of meat product curing, encouraging extensive research efforts. In terms of curing meat products, ultrasonic-assisted curing technology has been widely studied due to its advantages of accelerating the curing speed, reducing nutrient loss, and improving the tenderness of cured meats. Therefore, this article aims to comprehensively review the application and mechanism of ultrasound technology in various stages of meat product curing. Furthermore, it also elaborates the effects of ultrasonic-assisted curing on the tenderness, water retention, and flavor substances of the meat products during the curing process. Besides, the implication of the ultrasound in the processing of meat curation plays a potent role together with other technologies or methods. The use of ultrasound technology in the process of meat curation was analyzed, which might be a theoretical insight for the industrialization prospects of the meat product.
Collapse
Affiliation(s)
- Biao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
7
|
Li G, Chen D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J Sep Sci 2024; 47:e2300712. [PMID: 38234023 DOI: 10.1002/jssc.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Like other traditional medicine in the world, Chinese traditional medicine (CTM) has a long history, which is a treasure of the combination of medicine and Chinese classical culture even more than 5000 years. For thousands of years, CTM has made great contributions to the reproduction and health of the Chinese people. It was an efficient therapeutic tool under the guidance of Chinese traditional medical theory, its source is generally natural products, but there are also a small number of it are natural products after some processing methods. In fact, the definition of Chinese medicine (CM) includes both traditional and new CM developed by modern technology. It is well known that the chemical composition of most CM and natural products is very complex, for example, a single herb may contain hundreds of different chemicals, including active ingredients, side effects, and even toxic ingredients. Therefore, the extraction process is particularly crucial for the quality and clinical efficacy of CM and natural products. In this work, a new classification method was proposed to divide the extraction technologies of CM and natural products into 21 kinds in recent years and analyze their status, advantages, and disadvantages. Then put forward a new technical route based on ultra-high-pressure extraction technology for rapid extraction else while removing harmful impurities and making higher utilization of CM and natural products. It is a useful exploration for the extraction industry of medicinal materials and natural products in the world.
Collapse
Affiliation(s)
- Geyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
8
|
Eftekhari A, Salehi F, Gohari Ardabili A, Aghajani N. Effects of basil seed and guar gums coatings on sensory attributes and quality of dehydrated orange slices using osmotic-ultrasound method. Int J Biol Macromol 2023; 253:127056. [PMID: 37758104 DOI: 10.1016/j.ijbiomac.2023.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
In this work, the effects of gum coating (basil seed and guar gums), ultrasonic power, sonication time, and sucrose concentration on the osmosis dehydration parameters (water loss, solid gain, and rehydration rate), sensory attributes, color changes, and surface shrinkage of dehydrated orange slices using osmotic-ultrasound method were studied. The moisture loss and sucrose gain increased when the ultrasonic duration and sucrose level increased. The edible coating reduced solids absorption, with the lowest sucrose absorption in the basil seed gum-coated slices. Also, the coating increased rehydration rate of dried orange slices, with the highest rehydration ratio in the basil seed gum-coated slices (225.91 %). Edible coating with basil seeds gum improved the sensorial attributes of dried orange slices. The total color difference (ΔE) and surface shrinkage of osmotic dehydrated, dried, and rehydrated orange slices decreased with edible coating pretreatment and increasing in the sonication intensity. As the ultrasound duration enhanced from 5 to 15 min, the average surface shrinkage values of dried and rehydrated orange slices increased from 22.74 % to 26.36 %, and 12.18 % to 15.50 %, respectively. The current work confirmed that the gum coating has the potential to enhance appearance quality and sensorial attributes of osmotic-ultrasound dehydrated orange slices.
Collapse
Affiliation(s)
- Ahmadreza Eftekhari
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | | | - Narjes Aghajani
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
9
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Effect of protein structure changes during different power ultrasound thawing on emulsification properties of common carp (Cyprinus carpio) myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 101:106719. [PMID: 38091741 PMCID: PMC10757250 DOI: 10.1016/j.ultsonch.2023.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The impact of ultrasound thawing (UT) at different power (0 W, 100 W/0.132 W·cm-2, 300 W/1.077 W·cm-2, and 500 W/1.997 W·cm-2, namely WT, UT-100, UT-300, and UT-500) on protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein were investigated in the present study. The result showed that the reactive sulfhydryl content, total sulfhydryl content, protein solubility, and absolute potential of UT-300 samples were obviously higher than those of other thawed samples, while the turbidity of UT-300 samples was lower (P < 0.05), which indicated that proper UT power was beneficial to inhibit protein aggregation caused by thawing, while too low (100 W) or too high (500 W) ultrasonic power had poor effect. The Ca2+-ATPase activity and thermal stability of UT-300 samples were much higher than those of other thawed samples (P < 0.05), indicating that UT-300 inhibited myosin denaturation and thermal stability reduction of thawed products. The α-helix content of UT-300 samples was higher than that of other thawed samples, while the β-sheet content was significantly lower than that of other thawed samples (P < 0.05). The fluorescence intensity of UT-300 samples was higher than that of other thawed samples, and the λmax of UT-300 samples and UT-100 samples were lower than that of other thawed samples, which indicated that UT-300 could effectively inhibit the alteration of protein secondary structure and tertiary structure during thawing. The emulsifying activity of UT-300 samples was significantly higher than that of WT samples, and the droplet diameter of UT-300 samples was also lower than that of WT samples (P < 0.05), which indicated that UT-300 inhibited the decrease of emulsifying property during thawing. Overall, moderate ultrasonic power (300 W) could effectively inhibit the protein aggregation and structural changes during thawing, led to the decrease of emulsifying activity.
Collapse
Affiliation(s)
- Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Guo L, Qiao J, Zhang L, Yan W, Zhang M, Lu Y, Wang Y, Ma H, Liu Y, Zhang Y, Li J, Qin D, Huo J. Critical review on anthocyanins in blue honeysuckle (Lonicera caerulea L.) and their function. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108090. [PMID: 37847973 DOI: 10.1016/j.plaphy.2023.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is an emerging commercial fruit in the world, has been known for its multiple anthocyanins in the berries, cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and it makes up 76-92% of the total anthocyanins content, with high antioxidant capacity, and widely used in food products. In this review, recent studies related to anthocyanins in blue honeysuckle were sorted out, including the current status of research on anthocyanins in blue honeysuckle berries, especially C3G, qualitative and quantitative analysis of anthocyanins in berries, extraction and purification methods of anthocyanins from blue honeysuckle, in addition, biological effects of blue honeysuckle, and recommended utilization. Blue honeysuckle contains polyphenols, flavonoids, anthocyanins, minerals, and multiple bioactive compounds, it has been extensively reported to have significant antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, and anti-diabetic functions, and has been used in a variety of food products as raw materials.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Heilongjiang Green Food Science Research Institute, 150023, China
| | - Weijiao Yan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Meihui Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yongchuan Lu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yutong Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Hexi Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jichuan Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
11
|
Yıkmış S, Tokatlı Demirok N, Levent O, Apaydın D. Impact of thermal pasteurization and thermosonication treatments on black grape juice ( Vitis vinifera L): ICP-OES, GC-MS/MS and HPLC analyses. Heliyon 2023; 9:e19314. [PMID: 37662818 PMCID: PMC10474434 DOI: 10.1016/j.heliyon.2023.e19314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Grape juice is a widely consumed fruit due to its bioactive compounds, minerals, and aroma components. Our objective was to investigate ultrasound treatment of black grape juice affects its bioactive components due to using response surface methodology (RSM) and artificial neural network (ANN) optimization. At the same time, mineral components, sugar components, organic acids, and volatile aroma profiles were compared in black grape juice treated with thermal and ultrasound pasteurization. ANN showed superior predictive values (>99%) to RSM. Optimal combinations were obtained at 40 °C, 12 min, and 65% amplitude for thermosonication. Under these conditions, phenolic, flavonoid, antioxidant activity, and anthocyanin values were 822.80 mg GAE/L, 97.50 mg CE/L, 24.51 mmol Trolox/L, and 368, 81 mg of mv-3-glu/L, respectively. Thermosonicated grape juice (TT-BGJ) was tested against black grape juice (P-BGJ) produced with conventional thermal methods. This study investigated the effects of thermal pasteurization and thermosonication on black grape juice bioactive compounds and minerals, aroma profile, and sensory evaluation. Thermosonication affected the aroma profile less, 329.98 μg/kg (P-BGJ) and 495.31 μg/kg (TT-BGJ). TT-BGJ was detected to contain seven different mineral elements (Mn, K, Fe, Mg, Cu, Zn, and Na). Thermosonication caused an increase in Fe, Zn, Mn, and K minerals. Panelists generally liked the TT-BGJ sample. These results suggest that the thermosonication process may potentially replace the traditional black grape juice processing thermal process.
Collapse
Affiliation(s)
- Seydi Yıkmış
- Department of Food Technology, Tekirdag Namik Kemal University, Tekirdag, 59830, Turkey
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdağ, 59030, Turkey
| | - Okan Levent
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey
| | - Demet Apaydın
- Department of Restaurant and Catering Services, Hitit University, Corum, 19000, Turkey
| |
Collapse
|
12
|
Guo L, Qiao J, Gong C, Wei J, Li J, Zhang L, Qin D, Huo J. C3G quantified method verification and quantified in blue honeysuckle (Lonicera caerulea L.) using HPLC–DAD. Heliyon 2023; 9:e14685. [PMID: 37035373 PMCID: PMC10073751 DOI: 10.1016/j.heliyon.2023.e14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Blue honeysuckle is a source of anthocyanins with great potential as a food colorant, and a healthy and functional food material, and contains much cyanidin 3-glucoside (C3G), which has many benefits for human health. A rapid, reliable, accurate quantification method of anthocyanin content in different varieties of blue honeysuckle is critical to help in breeding and selecting excellent varieties which are used in the food processing industry and healthcare industry. Our objective was to verify the modified quantification method of C3G and quantified C3G content in three blue honeysuckle varieties of 'Berel', 'Lanjingling' and 'Wulan' using the modified HPLC method by Agilent 1200 system and CAPCELL PAK C18 column (150 mmⅹ4.6 mm, I. D., 5 μm, Japan), with detection at 530 nm, the solvent flow rate was 1 mL/min, the temperature of the column chamber is 35 °C. The results indicated that the modified method was validated in terms of linearity (R2 = 0.999), precision (RSD = 0.61%), stability (RSD = 5.23%), and recovery with a good level, and C3G can be quickly quantified in blue honeysuckle. In addition, 'Wulan' contains the highest C3G level compared with 'Lanjingling' and 'Berel'.
Collapse
|
13
|
Zhou Y, Li J, Li Z, Ma Q, Wang L. Extraction of anthocyanins from haskap using cold plasma-assisted enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2186-2195. [PMID: 36418203 DOI: 10.1002/jsfa.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Haskap berries (Lonicera caerulea L.) are rich in anthocyanins. Cold plasma-assisted enzyme method (CPEM) is an innovative method for green extraction of anthocyanins, which was optimized by an artificial neural network-genetic algorithm (ANN-GA) to maximize the yield. In this study, seven factors were screened using by Plackett-Burman design based on single-factor experiments and optimized by ANN-GA. RESULTS The results showed that the maximum total anthocyanin content (TAC, 42.45 ± 0.25 g cyanidin-3-glucoside equivalent (C3G) kg-1 dry weight, DW) was obtained under optimal pretreatment power of 192 W, pretreatment time of 29 s and liquid-to-solid ratio of 39 mL g-1 . Cleavage and porosity appeared on the surface of the treated sample. The active ingredients and antioxidant capacity of the CPEM extracts were identified by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Compared with other extraction technologies, CPEM presents the advantages of shortening the extraction time, reducing the solvent volume, and significantly increasing active ingredients and antioxidant activity. CONCLUSION The ANN-GA has better predictive and higher accuracy than the response surface methodology (RSM) model and is more suitable for optimizing the CPEM by greatly improving the process yield and the utilization of biomass, thus contributing to the sustainability of the agri-food chain. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiangfei Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zongping Li
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Qingshu Ma
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
14
|
Liu X, Zhang C, Wang H, Wang Y, Zhu D, Liu H. Ultrasonic treatment maintains the flavor of the melon juice. ULTRASONICS SONOCHEMISTRY 2023; 92:106284. [PMID: 36603464 PMCID: PMC9826901 DOI: 10.1016/j.ultsonch.2022.106284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 06/07/2023]
Abstract
Thermal treatment usually leads to the flavor deterioration of melon juice. This study was initiated to evaluate the retention effect of ultrasonic (US) and ultra-high pressure (UHP) on volatile components of melon juice by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS). The electronic nose, electronic tongue, and GC-IMS analysis showed that US was much better way to contain the flavor of melon juice than UHP was does. The correlation coefficient between the US and the control was as high as 0.99. The concentration of characteristic aroma components in melon juice after ultrasonic treatment was 2.77 times and 3.02 times higher than that in the control and UHP, respectively. Moreover, the US treatment gave no significant difference in the total soluble solids, pH, and color of the juice. And it dramatically enhanced the flavor profile of melon juice.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chao Zhang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Hui Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| |
Collapse
|