1
|
Dai Q, Li X, He C, Liang Y, Xiong H, Ma Y, Zhai S. Physicochemical characterization and in vitro digestibility of resistant starch from corn starch sugar residue. Food Chem X 2025; 25:102113. [PMID: 39834523 PMCID: PMC11742812 DOI: 10.1016/j.fochx.2024.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
This study sought to investigate the thermal stability and digestibility of corn starch sugar residue resistant starch (CSSR-RS) through comparative analysis of the physicochemical properties and structural characteristics among CSSR-RS, high-amylose corn starch (HS), and normal corn starch (NS). CSSR-RS contained 51.76 % resistant starch (RS), with 42.6 % remaining after high-temperature treatment, which was significantly higher than HS, demonstrating strong resistance to gelatinization. CSSR-RS is characterized by highly ordered aggregation of small molecules with a C-type crystalline structure, and irregular granular structures with wrinkled surfaces. Compared with NS and HS, the short-range and long-range order of CSSR-RS were significantly higher, indicating excellent thermal stability. In vitro simulated digestion revealed that the total hydrolysis rate of CSSR-RS was significantly lower than those of NS and HS, and the residual digesta of CSSR-RS also showed better resistance to digestion than HS. CSSR-RS exhibited significant development prospects in healthy food.
Collapse
Affiliation(s)
- Qianqian Dai
- Fisheries College of Jimei University, State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian 361021, China
| | - Xiaoke Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ying Liang
- Fisheries College of Jimei University, State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ying Ma
- Fisheries College of Jimei University, State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian 361021, China
| | - Shaowei Zhai
- Fisheries College of Jimei University, State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian 361021, China
| |
Collapse
|
2
|
Ahmed Z, Xu B, Farooq U, Manzoor MF, Awad MF, Ashraf J, Tufail T, Abdi G. Impact of multi-frequency ultrasound processing with different treatment times on the structural quality of frozen wheat dough. ULTRASONICS SONOCHEMISTRY 2024; 111:107116. [PMID: 39461188 PMCID: PMC11544065 DOI: 10.1016/j.ultsonch.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the effects of multi-frequency ultrasound treatment on the quality of frozen dough. We analyzed frozen wheat dough comprehensively for texture, viscosity, rheology, and structural quality characteristics under multi-frequency ultrasound (20 kHz, 20/40 kHz, and 20/40/60 kHz) with different treatment times (10, 20, and 30 mins). The dough treated with multi-frequency ultrasound increased elasticity and reduced hardness. Scanning electron microscopy revealed that 20/40/60 kHz for 30 min minimized freezing-induced morphological damage, decreased the tan δ in rheological analysis, and led to higher pasting and gelatinization enthalpy in starch granules, resulting in a more cohesive structure and lower free water content. Frozen dough hardness decreased by 52.1 %, which is associated with the control frozen dough with ultrasound frequency and duration changes. The spectral peaks in wheat flour frozen dough treated with single, dual, and tri-frequency ultrasound had the same forms and positions as the control samples but were arranged in an orderly manner. This study demonstrates the potential of multi-frequency ultrasound to enhance the quality of wheat frozen dough by mitigating freezing-induced deteriorations, offering a promising approach to improving the processing of frozen dough.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Umar Farooq
- Department of Nutrition and Dietetics, National University of Medical Sciences Rawalpindi, Pakistan
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guanghzou, China
| | - Mohamed F Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Jawad Ashraf
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169 Bushehr, Iran.
| |
Collapse
|
3
|
Abker AM, Xia Z, Hu G, Fu X, Zhang Y, Jin Y, Ma M, Fu X. Using salted egg white in steamed bread: Impact on functional and structural characteristics. Food Chem 2024; 454:139609. [PMID: 38795615 DOI: 10.1016/j.foodchem.2024.139609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.
Collapse
Affiliation(s)
- Adil M Abker
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiaowen Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J. Physiochemical characterization and ameliorative effect of rice resistant starch modified by heat-stable α-amylase and glucoamylase on the gut microbial community in T2DM mice. Food Funct 2024; 15:5596-5612. [PMID: 38722000 DOI: 10.1039/d3fo05456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
5
|
You M, Peng Z, Jiang Y, Yao C, Yang B, Ban Q, Cheng J. The properties of the rice resistant starch processing and its application in skimmed yogurt. Int J Biol Macromol 2024; 265:131087. [PMID: 38521311 DOI: 10.1016/j.ijbiomac.2024.131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Extrusion is typically employed to prepare resistant starch (RS). However, the process is complicated. In this study, the effects of twin-screw extrusion on the crystallinity, thermal properties, and functional properties of starch formed in different extrusion zones were investigated. The effects of this process on the rheological properties and microstructure of RS-added skimmed yogurt were also studied. According to the results, the RS content increased from 7.40 % in the raw material to 33.79 % in the extrudate. The A-type crystal structure of the starch was not observed. The dissociation temperature of the extruded starch ranged from 87.76 °C to 100.94 °C. The glycemic index (GI) of skimmed yogurt fortified with 0.4 % RS was 48.7, and the viscosity was also improved. The microstructure exhibited a uniform network of the starch-protein structure. The findings may serve as a theoretical basis for the application of RS in the food industry.
Collapse
Affiliation(s)
- Meiyue You
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chiyu Yao
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Baocai Yang
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining 272007, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Cui L, Wang X, Zhang J, Ai Z, Hu Y, Liu S, Tang P, Zou H, Li X, Wang Y, Nan B, Wang Y. Physicochemical properties and in vitro digestibility of ginseng starches under citric acid-autoclaving treatment. Int J Biol Macromol 2024; 265:131031. [PMID: 38518930 DOI: 10.1016/j.ijbiomac.2024.131031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.
Collapse
Affiliation(s)
- Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
7
|
Niu H, Zhao F, Ji W, Ma L, Lu B, Yuan Y, Yue T. Structural, physicochemical properties and noodle-making potential of quinoa starch and type 3, type 4, and type 5 quinoa resistant starch. Int J Biol Macromol 2024; 258:128772. [PMID: 38103670 DOI: 10.1016/j.ijbiomac.2023.128772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
This study prepared type 3, type 4, and type 5 quinoa resistant starch (QRS3, QRS4, and QRS5) from quinoa starch (QS), compared their structural and physicochemical properties and evaluated their noodle-making potential. The results showed that the molecular weight of QRS3 decreased, the number of short-chain molecules increased, and its crystal type changed to B-type after gelatinization, enzymatic hydrolysis, and retrogradation. QRS4 is a phosphorylated cross-linked starch, with a surface morphology, particle size range, and crystal type similar to QS, but displaying modified thermodynamic properties. QRS5 is a complex of amylose and palmitic acid. It displays typical V-type crystals, mainly composed of long chain molecules and primarily exhibits a block morphology. The noodles prepared by replacing 20 % wheat flour with QS, QRS3 and QRS5 have higher hardness and are suitable for people who like elasticity and chewiness. QRS4 noodles are softer and suitable for people like elderly and infants who prefer soft foods. In conclusion, significant differences were evident between the fine structures, crystal types, physicochemical properties and potential applications of QS and the three QRSs. The results may expand the application of QS and QRS in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Wenxin Ji
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Langtian Ma
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Bozhi Lu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
8
|
Hou X, Li X, Li J, Cong J, Jiang L, Shen G, Chen A, Zhang Z. Changes in the structural and physicochemical characteristics of sonicated potato flour. ULTRASONICS SONOCHEMISTRY 2023; 99:106573. [PMID: 37666069 PMCID: PMC10482878 DOI: 10.1016/j.ultsonch.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Ultrasound has been widely used for physical modifications of starch because of its effectiveness and environment friendliness; however, only a few reports have focused on the effect of varying ultrasonic treatments on the physicochemical properties of potato flour. In the present study, ultrasound at varying power levels (200, 300, 400, 500, and 600 W) and time intervals (20, 40, 60, 80, and 100 min) were used to obtain sonicated flour. Sonicated potato flour exhibited a significant (P < 0.05) decrease in blue value and oil holding capacity but an increase in swelling power, water solubility, syneresis rate, and transparency. Moreover, ultrasound decreased the RDS content while increasing RS and SDS contents. Thermal properties demonstrated significant (P < 0.05) increases in T0 (64.39℃-83.52℃) and TC (144.29℃-146.87℃) but a decrease in ΔH of the sonicated flour. SEM revealed wrinkles, less debris, and larger particle size at the surface of the sonicated flour. FTIR profiles of all samples exhibited similar characteristics peaks, but the sonicated flour had a higher R1047/1022 value. Additionally, ultrasound did not affect crystalline patterns, but it increased the crystallinity of the sonicated flour. Our study contributes to the understanding of physicochemical property changes of sonicated potato flour, which could have industrial applications.
Collapse
Affiliation(s)
- Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xiaowan Li
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jun Cong
- Chongqing Academy of Animal Science, China
| | - Lingyan Jiang
- Pingwu Food and Drug Inspection and Testing Center, Sichuan, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China.
| |
Collapse
|
9
|
Zhang M, Chen X, Zhang Y, Zhang R, Liu J, Fan B, Wang F, Li L. Application progress of ultrasonication in flour product processing: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106538. [PMID: 37541126 PMCID: PMC10407950 DOI: 10.1016/j.ultsonch.2023.106538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Flour products played a vital role in the global diet structure. With the increasing demand for dietary health and food standardization, the staple food of flour products made from coarse grains due to its unique flavor and rich nutrition has become a trend and is favored by consumers. However, the lack of gluten protein in the raw materials prevented the formation of a stable gluten network structure, leading to the deterioration of the quality of flour products. Ultrasonic treatment, as an innovative food processing technology, generated energy during the action of ultrasonic waves that had a positive impact on the texture, organizational structure, or flavor characteristics of food. That was of great significance for improving food production efficiency, improving food processing quality, and extending food shelf life. This article applied ultrasonic technology to the processing of flour products from the perspective of promoting fermentation and improving production efficiency of flour products. The cavitation effect of ultrasound promoted the formation of gluten network structure, improved the rheology properties of dough and the quality of flour products by promoting protein cross-linking, improving the foaming and emulsifying stability of gluten protein, and promoting the growth and reproduction of yeast. All reviewed studies indicate that ultrasound would be a promising technology for producing high-quality surface products under appropriate conditions.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China
| | - Xuanhong Chen
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China
| | - Yan Zhang
- Shandong Agricultural Technology Promotion Center, Jinan 250014, Shandong, China
| | - Ruoyu Zhang
- Zibo Institute for Food and Drug Control, Zibo 255000, Shandong, China
| | - Jun Liu
- Shandong Yuwang Biotechnology Co., Ltd, Dezhou 25300, Shandong, China
| | - Bei Fan
- Institute of Food Science and Technology CAAS, Beijing 100000, China
| | - Fengzhong Wang
- Institute of Food Science and Technology CAAS, Beijing 100000, China.
| | - Long Li
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China.
| |
Collapse
|
10
|
Tan C, Tao L, Xie J, Yu Z, Tian Y, Zhao C. The Effects of Ultrasonic and Gamma Irradiation on the Flavor of Potato Wines Investigated by Sensory Omics. Foods 2023; 12:2821. [PMID: 37569090 PMCID: PMC10417215 DOI: 10.3390/foods12152821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aroma is one of the most fascinating and least-known mysteries of Baijiu research. The volatile compounds (VOCs) of potato wine were evaluated by sensory omics techniques in order to comprehend their overall flavor characteristics and investigate the effects of ultrasonic treatment and gamma irradiation therapy on the aroma of the wine. The findings revealed that a total of 14 flavor compounds were identified by GC-MS. Isoamyl alcohol, ethyl octanoate, and 1,1-diethoxyethane were the key aroma components, according to GC-O analysis. A total of 50 volatile substances were identified by GC-IMS. After being subjected to irradiation and ultrasonic treatment, the alcohol level of the potato wine reduced while the esters content increased. By calculating the relative odor activity value, a total of 29 aroma components were classified as key aroma compounds (ROAV > 1). According to the results of the sensory evaluation-fruity, Fen-flavor, and sweet-and the acceptability of the irradiated and ultrasonicated potato wine were improved. Therefore, the use of ultrasonic and irradiation therapy in potato wine, as well as the overall aroma building of potato wine, can be supported theoretically by this study.
Collapse
Affiliation(s)
- Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Zhijin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Pu’er University, Pu’er 665000, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|