1
|
Joshi K, Sojahrood AJ, Sanwal R, Kolios MC, Tsai SSH, Lee WL. Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition. ACS APPLIED BIO MATERIALS 2025; 8:3227-3238. [PMID: 40110741 DOI: 10.1021/acsabm.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ultrasound and microbubble-mediated gene delivery is emerging as a powerful nonviral gene delivery approach due to its ability to target various tissues. Since microbubble cavitation plays a crucial role in gene delivery, factors affecting cavitation, such as microbubble composition, size, ultrasound pressure, frequency, and pulse interval, can directly affect the efficiency of gene delivery. The effect of ultrasound parameters on gene delivery efficiency has been systematically investigated in numerous studies. However, relatively few studies have investigated the influence of different microbubble compositions on gene delivery. In this paper, we report that microbubbles made with the same lipids but different poly(ethylene glycol) (PEG) derivatives lead to significantly different gene delivery efficiencies in vitro. Moreover, we show that the type of PEG derivative used in microbubble formulations greatly influences the acoustic response of microbubbles (i.e., resonance frequency and frequency-dependent attenuation coefficient), thus explaining the differences in gene delivery efficiencies. Our results highlight that changing a single component in the microbubble formulation, i.e., the type of PEG derivative, can improve gene delivery efficiency by 3-fold. This comparative study of microbubbles made with different PEG derivatives may help researchers in designing microbubble formulations for optimal gene delivery.
Collapse
Affiliation(s)
- Kushal Joshi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Amin Jafari Sojahrood
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael C Kolios
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Scott S H Tsai
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) - A partnership between Toronto Metropolitan University and Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Tang H, Xiao Q, Fu J, Liu S, Wang W, Qin D. Interaction effects on acoustic emissions of submicron ultrasound contrast agents at subharmonic resonances. ULTRASONICS 2025; 148:107553. [PMID: 39681012 DOI: 10.1016/j.ultras.2024.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Submicron ultrasound contrast agents hold great potential to extend the bubble-mediated theranostics beyond the vasculature, but their acoustic response and the interaction effects between them remain poorly understood. This study set out to numerically examine the interaction effects on the subharmonic oscillations of nanobubbles and the resultant acoustic emissions under subharmonic resonance conditions. Results showed that a negative correlation between bubble size and subharmonic resonance frequency is readily obtained from the radius response curves. Moreover, it was also found that the larger nanobubble in a two-nanobubble system generally acts as the primary determinant for the subharmonic oscillations of the smaller one. Specifically, a larger nanobubble excited at its subharmonic resonance conditions can force a smaller nanobubble to undergo subharmonic oscillations, resulting in the generation of subharmonic acoustic emissions. Conversely, under specific resonance conditions, a smaller nanobubble undergoing subharmonic oscillations can also be restrained by a larger nanobubble that is off-resonance and consequently its subharmonic component disappears. Furthermore, it also clearly demonstrated that the generation of subharmonic resonance is pressure threshold dependent and the subharmonic resonant radius is distinctly reduced as the acoustic pressure increases. By contrast, a larger nanobubble has a lower pressure threshold than that of a smaller one, when subjected to their subharmonic resonance conditions respectively. More importantly, the higher pressure threshold of a smaller nanobubble can be prominently decreased by the interaction effects from a nearby larger nanobubble. For two interacting nanobubbles, the interaction effects strongly depend on the inter-bubble distance, and the farther the two nanobubbles is, the weaker the interaction effects become and even can be ignored. Additionally, the impacts of the lipid shell properties indicated that increasing shell viscoelasticity can increase the subharmonic resonant radius but dampen the subharmonic oscillations and the resultant acoustic emissions, which is more sensitive to the shell viscosity. This study can contribute to a better understanding of the complex interaction effects between submicron ultrasound contrast agents on the resultant acoustic emissions, potentially advancing nanobubble-specific ultrasound applications.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Qiao Xiao
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jia Fu
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Siyuan Liu
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Dui Qin
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Lei W, Chang S, Tian F, Zou X, Hu J, Qian S. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 109:107005. [PMID: 39098097 PMCID: PMC11345312 DOI: 10.1016/j.ultsonch.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Experimental studies have shown that ultrasonic cavitation can reversibly open the blood-brain barrier (BBB) to assist drug delivery. Nevertheless, the majority of the present study focused on experimental aspects of BBB opening. In this study, we developed a three-bubble-liquid-solid model to investigate the dynamic behavior of multiple bubbles within the blood vessels, and elucidate the physical mechanism of drug molecules through endothelial cells under ultrasonic cavitation excitation. The results showed that the large bubbles have a significant inhibitory effect on the movement of small bubbles, and the vibration morphology of intravascular microbubbles was affected by the acoustic parameters, microbubble size, and the distance between the microbubbles. The ultrasonic cavitation can significantly enhance the unidirectional flux of drug molecules, and the unidirectional flux growth rate of the wall can reach more than 5 %. Microjets and shock waves emitted from microbubbles generate different stress distribution patterns on the vascular wall, which in turn affects the pore size of the vessel wall and the permeability of drug molecules. The vibration morphology of microbubbles is related to the concentration, arrangement and scale of microbubbles, and the drug permeation impact can be enhanced by optimizing bubble size and acoustic parameters. The results offer an extensive depiction of the factors influencing the blood-brain barrier opening through ultrasonic cavitation, and the model may provide a potential technique to actively regulate the penetration capacity of drugs through endothelial layer of the neurovascular system by regulating BBB opening.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
4
|
Yu R, Fu G, Li X, Xi X, Chen X, Chen L, Zhang X, Zhu X. Ultrasonic-assisted preparation of SBS modified asphalt: Cavitation bubble numerical simulation and rheological properties. ULTRASONICS SONOCHEMISTRY 2024; 108:106982. [PMID: 38981340 PMCID: PMC11280085 DOI: 10.1016/j.ultsonch.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
SBS (styrene-butadiene-styrene block copolymer) is currently the most widely used asphalt modifier, and SBS modified asphalt is usually prepared by high-speed shearing. This paper combines the cavitation effect of ultrasonic to assist in the preparation of SBS modified asphalt, and conducts numerical simulation and rheological properties research on the cavitation bubbles in the molten SBS modified asphalt fluid. The cavitation bubbles in the modified asphalt fluid will expand and contract as the pressure changes inside and outside the bubbles. When the cavitation bubble is compressed to the minimum and the pressure inside the bubble reaches 1.94 × 105Pa, the direction of the velocity vector near the cavitation bubble will change with the expansion and compression of the bubble. The expansion-contraction process of a single cavitation bubble can release 6.41 × 10-7J of energy, thus breaking the long bonds in asphalt and generating a large number of free radicals react with the unsaturated C = C bonds in the SBS molecules. According to the preparation process of modified asphalt, the influence of ultrasonic wave on rheological property of modified asphalt was studied through experiments. The results show that ultrasonic treatment can enhance the elasticity of asphalt and improve the temperature sensitivity of asphalt. With the increase of ultrasonic treatment time, the anti-rutting deformation ability of SBS modified asphalt is greatly improved. At the same temperature, the recovery rate of asphalt also increases with the increase of ultrasonic treatment time, and the non-recoverable compliance (Jnr) decreases Combined with the numerical simulation of cavitation bubbles, the ultrasonic process is added to asphalt production, which is of great significance for the green production of modified asphalt and the improvement of the rheological properties of modified asphalt.
Collapse
Affiliation(s)
- Ruien Yu
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China; Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China.
| | - Gang Fu
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xiaohan Li
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xuanye Xi
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xiaowen Chen
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd, Beijing 101100, China
| | - Leilei Chen
- Key Laboratory of Safety and Risk Management on Transport Infrastructures (Nanjing), Ministry of Transport, Southeast University, Nanjing 211189, China
| | - Xiaoyan Zhang
- Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China
| | - Xijing Zhu
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. ULTRASONICS SONOCHEMISTRY 2024; 107:106890. [PMID: 38693010 PMCID: PMC11176833 DOI: 10.1016/j.ultsonch.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bubble cluster dynamics in viscoelastic media is instructive for ultrasound diagnosis and therapy. In this paper, we propose a statistical model for bubble cluster dynamics in viscoelastic media considering the radius distribution of bubble nuclei. By investigating and comparing the response for a bubble in three conditions: single bubble; multi-bubble with the same radius; multi-bubble with different radius, the following rules are found: The promotion or suppression of the bubble cluster on the bubble vibration is not monotonous with the increase of the number of bubbles. The promotion or suppression of the bubble cluster on the bubble vibration varies alternately with the frequency. The effect of bubble cluster on bubble vibration is mostly suppressed when the driving acoustic pressure amplitude pa is high (5000 kPa). Usually, the bubble cluster promotes the vibration of the large bubbles (R0 = 10 μm) more, or suppresses it less.
Collapse
Affiliation(s)
- Xiaozhuo Shen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 104:106808. [PMID: 38377805 PMCID: PMC11636826 DOI: 10.1016/j.ultsonch.2024.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.e., the cavitation dynamics, the resultant temperature, pressure and chemical yields within collapsing bubbles), particularly focusing on the influence of the interactions between bubbles. A comprehensive model was developed to simulate the acoustic cavitation dynamics via combining the influences of mass transfer, heat conduction and chemical reactions as well as the interaction effects between bubbles. The results demonstrated that only the large bubble exerts a greater impact on the small one in a two-bubble system. Specifically, within parameter ranges covered this study, there are noticeable decreases in the expansion ratio of the small bubble, the resultant temperature, pressure and molar yields of free radicals, hence weakening the cavitation intensity and cavitation- associated physico-chemical effects. Moreover, the influences of the interactions between bubbles were further assessed quantitatively under various parameters, such as the ultrasound amplitude PA and frequency f, the distance between bubbles d0, the initial radius of the large bubble R20, as well as the liquid properties (e.g., surface tension σ and viscosity μ). It was found that the suppression effect can be amplified when subjected to ultrasound with an increased PA and/or a decreased f, probably due to a stronger cavitation intensity under this condition. Additionally, the suppression effect is also enhanced with a decrease in d0, σ and μ, but with R20 increasing. This study can contribute to deepening knowledge about acoustic cavitation and the resultant physical and/or chemical effects, potentially further facilitating the ultrasound-assisted various applications involving acoustic cavitation.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Yanping Liu
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jian Tian
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Qin D, Yang Q, Lei S, Fu J, Ji X, Wang X. Investigation of interaction effects on dual-frequency driven cavitation dynamics in a two-bubble system. ULTRASONICS SONOCHEMISTRY 2023; 99:106586. [PMID: 37688945 PMCID: PMC10498094 DOI: 10.1016/j.ultsonch.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity. Specifically, the larger bubble of a two-bubble system shows a stronger effect on the smaller one, and this effect becomes more pronounced when the larger bubble undergoes harmonic and/or subharmonic resonances as well as the two bubbles get closer (e.g., d0 < 100 μm). For the influences of the dual-frequency excitation, the results show that the bubbles can achieve enhanced harmonic and/or subharmonic oscillations as the frequency combinations with small frequency differences (e.g., Δf < 0.2 MHz) close to the corresponding resonance frequencies of bubbles, and the interaction effects are consequently intensified. Similarly, the bubble oscillations and the interaction effects can also be enhanced as the acoustic pressure amplitude of each frequency component is equal and the pressure amplitude pA increases. Above a pressure threshold (pA = 215 kPa), a larger bubble undergoes period 2 (P2) oscillations, which can force a smaller bubble to change its oscillation pattern from period 1 (P1) into P2 oscillations. In addition, it is found that the medium viscosity dampens the bubble oscillations while the medium elasticity affects the bubble resonances, accordingly exhibiting stronger interaction effects at smaller viscosities (e.g., μ < 4 mPa·s) or certain elasticities (approximately G = 70-120 kPa, G = 160-200 kPa and G = 640-780 kPa) at which the bubble resonances occur. The study can contribute to a better understanding of the complex dynamic behaviors of interacting cavitation bubbles in viscoelastic tissues for high efficient cavitation-mediated biomedical applications using dual-frequency ultrasound.
Collapse
Affiliation(s)
- Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Qianru Yang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Shuang Lei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jia Fu
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Xiuxin Wang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Chen D, Wu P. Multi-bubble scattering acoustic fields in viscoelastic tissues under dual-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106585. [PMID: 37683413 PMCID: PMC10498095 DOI: 10.1016/j.ultsonch.2023.106585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Bubbles are widely used in the medical field due to their strong acoustic scattering properties, and the interaction between bubbles affects the scattering acoustic field caused by the bubble cluster. In this study, the dynamic equations of bubbles oscillating in viscoelastic tissues are solved numerically. The effect of bubble interaction on the scattered acoustic pressure under dual-frequency ultrasound is analyzed. In addition, the frequency spectra of the scattered acoustic waves due to the bubbles with and without considering the interaction are compared. The results show that the suppression or enlargement of the scattered sound pressure caused by the interaction between bubbles is related to the bubble radius and the incident frequency. Moreover, when the incident frequency is equal to the resonant frequency of the bubble with equilibrium radius R0, the effect of resonant bubbles is stronger than that of non-resonant bubbles. Meanwhile, for the multi-bubble system with a small bubble number density, the total response of the bubble cluster can be approximated as an algebraic sum of the dynamical behavior of individual bubbles.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Sea Deep Drilling and Exploration, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dehua Chen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Sea Deep Drilling and Exploration, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Sea Deep Drilling and Exploration, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Chen J, Chai J, Sun X, Tao Y, Chen X, Zhou G, Xu X. Unexpected variations in the effects of ultrasound-assisted myofibrillar protein processing under varying viscosity conditions. ULTRASONICS SONOCHEMISTRY 2023; 99:106553. [PMID: 37574643 PMCID: PMC10448329 DOI: 10.1016/j.ultsonch.2023.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The efficient synthesis of myofibrillar protein(MRN)-gallic acid (GAD) complex in ultrasound (UID)-assisted processing is a challenging problem in food manufacturing. In this investigation, the effect of viscosity characteristics on the efficiency of UID processing in MRN-based beverages was analyzed. Both viscosity and surface tension can increase sono-physico-chemical effects on the degradation of terephthalic acid and crystal violet, with surface tension having a more significant effect (negative correlation, R2 = 0.99) than viscosity (positive correlation, R2 = 0.79). The structural indicators and microstructure demonstrated that the reaggregation and refolding of the MRN structure during the modification procedure occurred with relatively small three-dimensional dimensions. Compared to the MRN/GAD4 group, the water contact angle of the MRN/GAD7 system enhanced by 129.44%, leading to greater system stability. The ABTS-scavenging capacity of the system increased by approximately 19.45% due to the increase in viscosity of these two categories.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zou Q, Zhong X, Zhang B, Gao A, Wang X, Li Z, Qin D. Bubble pulsation characteristics in multi-bubble systems affected by bubble size polydispersity and spatial structure. ULTRASONICS 2023; 134:107089. [PMID: 37406389 DOI: 10.1016/j.ultras.2023.107089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
This study seeks to explore the bubble pulsation characteristics in multi-bubble environment with a special focus on the influences of the size polydispersity and the two-dimensional structure of bubbles. Three representative configurations of three interacting bubbles are formed by setting the initial radii of cavitation bubbles and inter-bubble distances appropriately, then the pulsation characteristics of a small bubble are investigated and compared by the bifurcation analysis. The results illustrate that the bubble size polydispersity and two-dimensional structure would greatly affect the bubble pulsations (i.e., the amplitude and nonlinearity of pulsations). Furthermore, the effects of two-dimensional structure are strong at a small inter-bubble distance of the large and small bubbles while the bubble size polydispersity always significantly affects the bubble pulsations for all cases. Moreover, the influences of both bubble size polydispersity and two-dimensional structure can be enhanced as the acoustic pressure increases, which can also become stronger when the large bubble is located at the same side as the small bubble and the initial radius of large bubble increases. Additionally, the effects would also be increased when the tissue viscoelasticity varies within a certain range. The present findings shed new light on the dynamics of multiple polydisperse microbubbles in viscoelastic tissues, potentially contributing to an optimization of their applications with ultrasound excitation.
Collapse
Affiliation(s)
- Qingqin Zou
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xianhua Zhong
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Angyu Gao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xia Wang
- Department of Respiratory and Critical Care Medicine, Chonggang General Hospital Affiliated to Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
11
|
Qin D, Lei S, Chen B, Li Z, Wang W, Ji X. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. ULTRASONICS SONOCHEMISTRY 2023; 97:106456. [PMID: 37271030 DOI: 10.1016/j.ultsonch.2023.106456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bo Chen
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|