1
|
Amri N. Utilization of a constructed nanohydroxyapatite/Arabic gum/alginate composite based on cuttlefish bone for the removal of cadmium ions. Int J Biol Macromol 2025; 309:142891. [PMID: 40203928 DOI: 10.1016/j.ijbiomac.2025.142891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The purpose of this work is to explore the efficacy of cadmium ions (Cd2+) removal employing adsorption onto manufactured solid nanomaterials. This study synthesized three nanosolid adsorbents: nanohydroxyapatite based on cuttlefish bone (NHAPs), nanohydroxyapatite/alginate beads (HC), and nanohydroxyapatite/Arabic gum/alginate as triple biocomposite (HGC) beads. Various physicochemical techniques were used to study the morphological, physical, and chemical characteristics of solid nanoadsorbents. The fabricated triple composite (HGC) showed a higher surface area (564.9 m2/g), acceptable pHPZC (7.3), and average TEM particle size of 150 nm. These manufactured materials were used as solid adsorbents to eliminate cadmium ions from wastewater under various test conditions such as shaking time, sample dose, pH, starting Cd2+ concentration, and temperature. The data revealed that HGC had a greater adsorption capacity (246.10 mg/g) at 16 °C. The adsorption of Cd2+ was well applied by nonlinear pseudo-first order and Elovich as kinetic investigations, besides Langmuir and Temkin models according to adsorption isotherm investigations onto all the samples. Based on the values of reduced chi-square value (ꭓ2), the pseudo-first order and Langmuir models are more accepted models for Cd2+ adsorption. The thermodynamic study revealed that the adsorption process of Cd2+ is endothermic and spontaneous. After eight adsorption and desorption operations, the highest batch adsorption capacity was reduced by 1.45 % for NHAPs, 5.49 % for HC, and 5.24 % for HGC. Our findings demonstrated that HGC has outstanding adsorption capacity, quick kinetics, and high effectiveness promising composite in water treatment applications.
Collapse
Affiliation(s)
- Nasser Amri
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, PO Box. 114, 45142 Jazan, Saudi Arabia.
| |
Collapse
|
2
|
Jiao T, Dong C, Zhu A, Ahmad W, Peng L, Wu X, Chen Q, Wei J, Chen X, Qin O, Chen Q. AFB1-responsive mesoporous silica nanoparticles for AFB1 quantification based on aptamer-regulated release of SERS reporter. Food Chem 2025; 463:141417. [PMID: 39388875 DOI: 10.1016/j.foodchem.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
In this study, we propose a novel surface-enhanced Raman scattering (SERS) method for quantifying aflatoxin B1 (AFB1). This method relies on the target-triggered release of a SERS reporter from aptamer-sealed aminated mesoporous silica nanoparticles (MSNs). These MSNs were synthesized to accommodate 4-mercaptophenylboronic acid (4-MPBA) within their well-defined micropores, which were subsequently sealed with AFB1 aptamers. Upon specific binding of AFB1 to its aptamer, the conformational change in the aptamer is regulated by the presence of the target. Consequently, a positive linear relationship between the AFB1 concentration and the 4-MPBA SERS signal was observed. Under optimal conditions, the method exhibited a good linear relationship over the range of 0.1 to 5 ng/mL AFB1, with a limit of detection (LOD) of 0.03 ng/mL. This strategy was validated using wheat samples, yielding results comparable to high performance liquid chromatography-fluorescence detector (P > 0.05), confirming its reliability for detecting AFB1 in complex food matrices.
Collapse
Affiliation(s)
- Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Chenggang Dong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaoxiao Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Ouyang Qin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Aati S, Farouk HO, Elkarmalawy MH, Aati HY, Tolba NS, Hassan HM, Rateb ME, Hamad DS. Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics 2024; 16:1432. [PMID: 39598555 PMCID: PMC11597389 DOI: 10.3390/pharmaceutics16111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Itraconazole (ITZ) is an antiangiogenic agent recognized as a potent suppressor of endothelial cell growth that suppresses angiogenesis. Nevertheless, its exploitation is significantly restricted by its low bioavailability and systematic side effects. The objective of this study was to utilize glycerosomes (GLY), glycerol-developed vesicles, as innovative nanovesicles for successful ITZ pulmonary drug delivery. METHODS The glycerosomes were functionalized with hyaluronic acid (HA-GLY) to potentiate the anticancer efficacy of ITZ and extend its local bio-fate. ITZ-HA-GLY were fabricated using soybean phosphatidylcholine, tween 80, HA, and sonication time via a thin-film hydration approach according to a 24 full factorial design. The impact of formulation parameters on ITZ-HA-GLY physicochemical properties, as well as the optimal formulation option, was evaluated using Design-Expert®. Sulphorhodamine-B (SRB) colorimetric cytotoxicity assay of the optimized ITZ-HA-GLY versus ITZ suspension was explored in the human A549 cell line. The in vivo pharmacokinetics and bio-distribution examined subsequent to intratracheal administrations of ITZ suspension, and ITZ-HA-GLY were scrutinized in rats. RESULTS The optimized ITZ-HA-GLY unveiled vesicles of size 210.23 ± 6.43 nm, zeta potential of 41.06 ± 2.62 mV, and entrapment efficiency of 73.65 ± 1.76%. Additionally, ITZ-HA-GLY manifested a far lower IC50 of 13.03 ± 0.2 µg/mL on the A549 cell line than that of ITZ suspension (28.14 ± 1.6 µg/mL). Additionally, the biodistribution analysis revealed a higher concentration of ITZ-HA-GLY within the lung tissues by 3.64-fold as compared to ITZ suspension. Furthermore, the mean resistance time of ITZ-HA-GLY declined more slowly with 14 h as compared to ITZ suspension, confirming the accumulation of ITZ inside the lungs and their promising usage as a target for the treatment of lung disease. CONCLUSIONS These data indicate that the improved ITZ-HA-GLY demonstrates significant promise and represents an exciting prospect in intratracheal delivery systems for lung cancer treatment, meriting further investigation.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Marwa H. Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt;
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City 32897, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK;
| | - Doaa S. Hamad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Nile Valley University, Fayoum 63518, Egypt;
| |
Collapse
|
4
|
Hu T, Zhang M, Wei X, Xu Z, Li D, Deng J, Li Y, Zhang Y, Lin X, Wang J. Efficient Pb(II) removal from contaminated soils by recyclable, robust lignosulfonate/polyacrylamide double-network hydrogels embedded with Fe 2O 3 via one-pot synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135712. [PMID: 39236531 DOI: 10.1016/j.jhazmat.2024.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Soil heavy metal removal strategies are increasingly valued for effectively reducing contamination and preventing secondary pollution. In this work, a double network hydrogel (Fe2O3@LH), consisting of lignosulfonate (LS) and polyacrylamide with embedded Fe2O3 nanoparticles, was synthesized successfully via a one-pot method and subsequently applied to adsorb lead (Pb) from contaminated soil. Incorporating Fe2O3 into the hydrogel enhances the adsorption capacity of Fe2O3@LH for Pb(II). The Fe2O3@LH hydrogel demonstrates a maximum Pb(II) adsorption capacity of 143.11 mg g-1, with Pb(II) removal mechanisms involving electrostatic adsorption, cation exchange, precipitation reactions, and the formation of coordination complexes, achieving a 22.3 % maximum removal efficiency in soil cultivation experiments. Additionally, the application of Fe2O3@LH markedly reduces the concentrations of cadmium (Cd) and arsenic (As) in the soil, meanwhile enhances the levels of total nitrogen (TN), soil organic matter (SOM), and cation exchange capacity (CEC) by 23.1 %, 10.6 %, and 16.9 %, respectively. Following 90 days of continuous application in the soil, the recovery rate of Fe2O3@LH remains above 75 %. The toxicity assay using zebrafish larvae indicates that Fe2O3@LH demonstrates good biosafety. This study demonstrates the considerable potential of Fe2O3@LH hydrogel for practical application in reducing Pb(II) levels in contaminated soil.
Collapse
Affiliation(s)
- Tian Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingkai Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiujiao Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianbin Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China.
| |
Collapse
|
5
|
Li C, Ma Y, Xu Y, Qiu R, Shen X, Huang L, Liu A, Li M, Zheng Y, Zhi X. Ultrasonic-assisted nanofiltration separation recovering salvianolic acid B from ethanol wastewater. ULTRASONICS SONOCHEMISTRY 2024; 108:106967. [PMID: 38917596 PMCID: PMC11255954 DOI: 10.1016/j.ultsonch.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The transformation of salvianolic acid B brought on by heat treatment recovery of ethanol eluent, which is a difficult problem in pharmaceutical technology, affects the purity of raw material when the medicinal raw material salvianolic acid B is purified by resin. Ultrasonic-assisted nanofiltration separation (UANS) was first employed to improve efficiency of resource utilization by regulating rejection and separating salvianolic acid B and rosmarinic acid from organic pharmaceutical wastewater. The rejection was related to three variables: ultrasonic power, pH, and ethanol concentration. But there were differences in the effects of variables on the rejections of salvianolic acid B and rosmarinic acid. The rejections of rosmarinic acid and salvianolic acid B showed a decreasing trend with an increase in ultrasonic power or a decrease in pH; however, when the concentration of ethanol was increased from 5 % to 35 %, the salvianolic acid B rejection increased from 84.96 % to 96.60 % and the rosmarinic acid rejection decreased from 35.09 % to 17.51 %. On the basis of response surface methodology (RSM), the optimal UANS parameters for solution conditions involving different ethanol concentrations are as follows: 10 % ethanol solution (ultrasonic power 500 W and pH 6.15), 20 % ethanol solution (ultrasonic power 500 W and pH 6.54), and 30 % ethanol solution (ultrasonic power 460 W and pH 6.34). The molecular proportions of salvianolic acid B were 10.75 %, 7.13 %, and 8.27 % in 10 %, 20 %, and 30 % ethanol wastewater, while the molecular proportions of rosmarinic acid were 40.52 %, 33.83 %, and 69.87 %, respectively. And the recoveries of salvianolic acid B in 10 %, 20 %, and 30 % ethanol wastewater were 93.56 %, 95.04 %, and 97.30 %, respectively, while the recoveries of rosmarinic acid were 3.19 %, 2.27 %, and 0.56 %. The molecular proportion and the rejection are correlated exponentially. In comparison with conventional nanofiltration separation (CNS), UANS is able to resolve the conflict between rosmarinic acid and salvianolic acid B in pharmaceutical wastewater, as well as enhance resource recycling and separation efficiency to prevent pollution of the environment from pharmaceutical wastewater. Experiments using UANS at different power intensities suggest that the ultrasonic at a power intensity of 46-50 W/L and the power density of 0.92-1.00 W/cm2 may resolve the separation conflict between rosmarinic acid and salvianolic acid B. This work suggests that UANS may be a significant advancement in the field of ultrasonic separation and has several potential uses in the water treatment industry.
Collapse
Affiliation(s)
- Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China; Jiangsu Engineering Research Center of Classical Prescriptions, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang 222067, China.
| | - Yun Ma
- The Fourth People's Hospital of Taizhou City, Taizhou 225300, China
| | - Yangyang Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ranyun Qiu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lulu Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anrong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingming Li
- Jiangsu Shenlong Pharmaceutical Co., Ltd, Dongtai 224200, China
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center of Classical Prescriptions, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang 222067, China.
| | - Xinglei Zhi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Zhu X, Liu H, Mei C, Chen F, Guo M, Wei C, Wang D, Luo M, Hu X, Zhao Y, Hao F, Shi C, Li W. A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2024; 160:213848. [PMID: 38581745 DOI: 10.1016/j.bioadv.2024.213848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Tissue engineering shows promise in repairing extensive bone defects. The promotion of proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by biological scaffolds has a significant impact on bone regeneration outcomes. In this study we used an injectable hydrogel, known as aminated mesoporous silica gel composite hydrogel (MSNs-NH2@GelMA), loaded with a natural drug, processed pyritum (PP), to promote healing of bone defects. The mechanical properties of the composite hydrogel were significantly superior to those of the blank hydrogel. In vitro experiments revealed that the composite hydrogel stimulated the osteogenic differentiation of BMSCs, and significantly increased the expression of type I collagen (Col 1), runt-related transcription factor 2 (Runx 2), alkaline phosphatase (ALP), osteocalcin (OCN). In vivo experiments showed that the composite hydrogel promoted the generation of new bones. These findings provide evidence that the composite hydrogel pyritum-loaded holds promise as a biomaterial for bone repair.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China; Jiangsu College of Nursing, Huai'an 223001, China
| | - Huanjin Liu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Changzhou 213003, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fugui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Chenxu Wei
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Jiangyin, 214400, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100000, China
| | - Meimei Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Xiaofang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Yuwei Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fangyu Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| |
Collapse
|
7
|
Mahmoud AED, Mostafa E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. MEMBRANES 2023; 13:789. [PMID: 37755211 PMCID: PMC10538012 DOI: 10.3390/membranes13090789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Water shortages are one of the problems caused by global industrialization, with most wastewater discharged without proper treatment, leading to contamination and limited clean water supply. Therefore, it is important to identify alternative water sources because many concerns are directed toward sustainable water treatment processes. Nanofiltration membrane technology is a membrane integrated with nanoscale particle size and is a superior technique for heavy metal removal in the treatment of polluted water. The fabrication of nanofiltration membranes involves phase inversion and interfacial polymerization. This review provides a comprehensive outline of how nanoparticles can effectively enhance the fabrication, separation potential, and efficiency of NF membranes. Nanoparticles take the form of nanofillers, nanoembedded membranes, and nanocomposites to give multiple approaches to the enhancement of the NF membrane's performance. This could significantly improve selectivity, fouling resistance, water flux, porosity, roughness, and rejection. Nanofillers can form nanoembedded membranes and thin films through various processes such as in situ polymerization, layer-by-layer assembly, blending, coating, and embedding. We discussed the operational conditions, such as pH, temperature, concentration of the feed solution, and pressure. The mitigation strategies for fouling resistance are also highlighted. Recent developments in commercial nanofiltration membranes have also been highlighted.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Esraa Mostafa
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|