1
|
Han J, Park Y, Jeon OS, Hong D, Piao Y, Yoo YJ, Park SY, Lee SH, Yoo J. Ultrasonic synthesis of conducting polymers intercalated potassium vanadate nanofiber composites as cathode for aqueous zinc-ion batteries. ULTRASONICS SONOCHEMISTRY 2025; 118:107378. [PMID: 40367665 DOI: 10.1016/j.ultsonch.2025.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Aqueous zinc-ion batteries (AZIBs) have gained attention as next-generation energy storage systems due to their safety, cost-effectiveness, and eco-friendliness. However, their commercialization is hindered by the structural instability and low electrochemical performance of cathode materials. Herein, we present poly(3,4-ethylenedioxythiophene) (PEDOT)-intercalated potassium vanadate nanofibers (E-PVNF) with oxygen vacancies, synthesized via a sonochemical method. Oxygen vacancies play a crucial role in facilitating Zn2+ diffusion and charge transport by providing additional ion migration channels and enhancing electronic conductivity. The E-PVNF exhibited a high specific capacity of 182.50mAh g-1 even at a high current density of 15 A g-1, significantly outperforming conventional potassium vanadate-based cathodes. To investigate the electrochemical behavior, overpotential and Zn2+ diffusion coefficient (DZn2+) were systematically evaluated as a function of synthesis time. The results revealed a substantial reduction in overpotential and a notable increase in DZn2+, reaching 3.86 × 10-10 cm2 s-1, nearly double that of pristine potassium vanadate. This improvement is attributed to the synergistic effects of PEDOT intercalation and oxygen vacancy engineering, which optimize Zn2+ diffusion pathways and enhance charge transfer. Additionally, while oxygen vacancies facilitate ion and electron transport, they do not directly increase theoretical capacity. This study provides a scalable and effective electrode design strategy for high-performance AZIBs, offering insights into the role of conducting polymer intercalation and oxygen vacancy engineering in improving electrochemical stability and rate capability.
Collapse
Affiliation(s)
- Juyeon Han
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yongyeol Park
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do 16229, Republic of Korea
| | - Ok Sung Jeon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA; Regional Leading Research Center for Smart Energy System, Kyungpook National University, Sangju 37224 Republic of Korea
| | - Dongpyo Hong
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do 16229, Republic of Korea
| | - Young Joon Yoo
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Sang Yoon Park
- School of Electronic Engineering, Kyonggi University, Gyeonggi-do 16227, Republic of Korea.
| | - Se Hun Lee
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Chen C, Liu Y, Wang C, Guo J, Lin S. Acoustic black hole immersed sonoreactor for high-efficiency cavitation treatment. ULTRASONICS SONOCHEMISTRY 2024; 111:107106. [PMID: 39447531 PMCID: PMC11539504 DOI: 10.1016/j.ultsonch.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Developing innovative sonoreactors to enhance acoustic processing efficiency holds immense importance in the field of sonochemistry. Traditional immersed sonoreactors (TISs) mainly produce cavitation at the probe tip, with a relatively weak cavitation around the probe, resulting in posing challenges for high-efficiency cavitation treatment. Here we propose an acoustic black hole immersed sonoreactor (ABHIS) in longitudinal-flexural coupled vibration, enabling high-efficiency cavitation treatment by unleashing the cavitation potential of the probe. The symmetrical structure of the probe is altered to introduce a coupling of flexural vibration mode, and an acoustic black hole (ABH) profile is integrated to further enhance both flexural wave number and amplitude. In this paper, we present a systematic theoretical design method for ABHIS and compare its performance with TIS using finite element method (FEM). An ABHIS prototype is fabricated and subjected to experimental tests and cavitation observation. The results demonstrate that our theoretical analysis model accurately predicts the frequency characteristics of ABHIS. The proposed ABHIS exhibits satisfactory dynamic characteristics, with significantly increased vibration displacement and acoustic radiation ability compared to TIS. Importantly, the ABH design significantly expands ultrasonic cavitation regions and enhances acoustic radiation intensity of ABHIS, resulting in a substantial improvement in acoustic processing efficiency.
Collapse
Affiliation(s)
- Cheng Chen
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Liu
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenghui Wang
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuyu Lin
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Das TK, Jesionek M, Mistewicz K, Nowacki B, Kępińska M, Zubko M, Godzierz M, Gawron A. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI 3 into BiOI Nanoflakes for Photocatalytic Applications. Int J Mol Sci 2024; 25:10265. [PMID: 39408604 PMCID: PMC11476912 DOI: 10.3390/ijms251910265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
This work describes a novel method for converting bismuth triiodide (BiI3) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI3 microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Marcin Jesionek
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Krystian Mistewicz
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Bartłomiej Nowacki
- Department of Industrial Informatics, Faculty of Materials Science, Joint Doctorate School, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland;
| | - Mirosława Kępińska
- Institute of Physics–Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland; (K.M.); (M.K.)
| | - Maciej Zubko
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A St., 41-500 Chorzów, Poland;
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowskiej St., 41-800 Zabrze, Poland; (M.G.); (A.G.)
| | - Anna Gawron
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowskiej St., 41-800 Zabrze, Poland; (M.G.); (A.G.)
| |
Collapse
|
4
|
Deng Q, Chen S, Wu W, Zhang S, An C, Hu N, Han X. Ultrasound-Assisted Preparation and Performance Regulation of Electrocatalytic Materials. Chempluschem 2024; 89:e202300688. [PMID: 38199955 DOI: 10.1002/cplu.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
With the advancement of scientific research, the introduction of external physical methods not only adds extra freedom to the design of electro-catalytical processes for green technologies but also effectively improves the reactivity of materials. Physical methods can adjust the intrinsic activity of materials and modulate the local environment at the solid-liquid interface. In particular, this approach holds great promise in the field of electrocatalysis. Among them, the ultrasonic waves have shown reasonable control over the preparation of materials and the electrocatalytic process. However, the research on coupling ultrasonic waves and electrocatalysis is still early. The understanding of their mechanisms needs to be more comprehensive and deep enough. Firstly, this article extensively discusses the adhibition of the ultrasonic-assisted preparation of metal-based catalysts and their catalytic performance as electrocatalysts. The obtained metal-based catalysts exhibit improved electrocatalytic performances due to their high surface area and more exposed active sites. Additionally, this article also points out some urgent unresolved issues in the synthesis of materials using ultrasonic waves and the regulation of electrocatalytic performance. Lastly, the challenges and opportunities in this field are discussed, providing new insights for improving the catalytic performance of transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuang Chen
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenliu Wu
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cuihua An
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
6
|
Sobhani Bazghale F, Gilak MR, Zamani Pedram M, Torabi F, Naikoo GA. 2D nanocomposite materials for HER electrocatalysts - a review. Heliyon 2024; 10:e23450. [PMID: 38192770 PMCID: PMC10772112 DOI: 10.1016/j.heliyon.2023.e23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Hydrogen energy has the potential to be a cost-effective and strong technology for brighter development. Hydrogen fuel production by water electrolyzers has attracted attention. 2D nanocomposites with distinctive properties have been extensively explored for various applications from hydrogen evolution reactions to improving the efficiency of water electrolyzer, which is the most eco-friendly, and high-performance for hydrogen production. Recently, typical 2D nanocomposites such as Metal-Free 2D, TMDs, Mxene, LDH, organic composites, and Heterostructure have recently been thoroughly researched for use in the HER. We discuss effective ways for increasing the HER efficiency of 2D catalysts in this paper, And the unique advantages and mechanisms for specific applications are highlighted. Several essential regulating strategies for developing 2D nanocomposite-based HER electrocatalysts are included such as interface engineering, defect engineering, heteroatom doping, strain & phase engineering, and hybridizing which improve HER kinetics, the electrical conductivity, accessibility to catalytic active sites, and reaction energy barrier can be optimized. Finally, the future prospects for 2D nanocomposites in HER are discussed, as well as a thorough overview of a variety of methodologies for designing 2D nanocomposites as HER electrocatalysts with excellent catalytic performance. We expect that this review will provide a thorough overview of 2D nanocatalysts for hydrogen production.
Collapse
Affiliation(s)
| | - Mohammad Reza Gilak
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Mona Zamani Pedram
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Farschad Torabi
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Gowhar A. Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| |
Collapse
|