1
|
Volk M, Molan K, Šavli D, Terlep S, Levičnik-Höfferle Š, Gašpirc B, Lukač M, Jezeršek M, Stopar D. Biofilm removal from Difficult-to-Reach places via secondary cavitation within a constrained geometry mimicking a Periodontal/Peri-Implant pocket. ULTRASONICS SONOCHEMISTRY 2024; 104:106832. [PMID: 38429168 PMCID: PMC10985801 DOI: 10.1016/j.ultsonch.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Biofilm removal from the apical region of the periodontal or peri-implant pocket, which is very difficult to achieve with mechanical instruments, is a major unresolved issue in dentistry. Here, we propose the use of photoacoustically induced streaming and secondary cavitation to achieve superior cleaning efficacy in the apical region of the periodontal and peri-implant pocket. We have used a prefabricated narrow wedge system that mimics the consistency of periodontal and peri-implant pockets of both healthy and severely inflamed tissue. We studied the effect of single-pulse modality Er:YAG on Pseudomonas aeruginosa biofilm removal. We used different laser energies, fiber-tip positions, and laser treatment durations. The cleaning process was monitored in real-time with a high-speed camera after each individual laser pulse application. The obtained results suggest that biofilm cleaning efficacy in a difficult-to-reach place in healthy model tissue is directly related to the onset of secondary cavitation bubble formation, which correlates with a significant improvement of biofilm removal from the apical region of the periodontal or peri-implant pocket. In comparison to the healthy tissue model, the laser energy in inflamed tissue model had to be increased to obtain comparable biofilm cleaning efficacy. The advantage of photoacoustic cavitation compared to other methods is that laser-induced cavitation can trigger secondary cavitation at large distances from the point of laser application, which in principle allows biofilm removal at distant locations not reachable with a laser fiber tip or other mechanical instruments.
Collapse
Affiliation(s)
- Marko Volk
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Katja Molan
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Dominik Šavli
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana 1000, Slovenia
| | - Saša Terlep
- Fotona d.o.o., Stegne 7, Ljubljana 1000, Slovenia
| | | | - Boris Gašpirc
- University of Ljubljana, Medical Faculty, Department of Oral Medicine and Periodontology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matjaž Lukač
- Fotona d.o.o., Stegne 7, Ljubljana 1000, Slovenia; Institut Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia; University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, Ljubljana 1000, Slovenia
| | - Matija Jezeršek
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana 1000, Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Večna pot 111, Ljubljana 1000, Slovenia.
| |
Collapse
|