1
|
Ma T, Cheng H, Kong L, Shen C, Jin H, Li H, Pan C, Liang J. Combined exposure of PS-MPs with NaF induces Sertoli cell death and dysfunction via ferroptosis and apoptosis. Toxicology 2024; 506:153849. [PMID: 38821197 DOI: 10.1016/j.tox.2024.153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The individual toxicity of sodium fluoride (NaF) and microplastics (MPs) has been extensively documented. Owing to their high specific surface area, widespread presence and durability, MPs can adsorb a broad spectrum of environmental contaminants into the organism. However, the combined toxicity of NaF and MPs has not been investigated. This study aimed to assess the effects of combined exposure to NaF and MPs on the function of testicular Sertoli cells (SCs) in male mice, and to investigate the underlying molecular mechanisms. The study revealed that combined exposure to NaF and MPs resulted in a decrease in the negative surface charge of MPs, along with an increase in the number of MPs entering the SCs. Through in vivo observation of the testicular pathological structure, spermatogenesis, and cell apoptosis in 180-day-old male mice, we discovered that combined exposure to NaF (80 mg/L) and MPs (10 mg/L) heightened reproductive toxicity compared to the individual exposure groups. This was evidenced by testicular structural defects, impaired spermatogenesis, and increased testicular cell apoptosis. Our in vitro studies showed that NaF (21 μg/mL) and MPs (100 μg/mL) synergistically induced SCs apoptosis and ferroptosis, leading to a reduction in SCs number and dysfunction. This ultimately resulted in structural and functional damage to the testes. Our findings demonstrate, for the first time, the synergistic effects of NaF and MPs on reproductive toxicity in mammals. These insights may provide valuable contributions to co-toxicity studies involving MPs and other environmental pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Huixian Cheng
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu, Anhui 241001, China
| | - Liang Kong
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chenghao Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Haibo Jin
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Chun Pan
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
2
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Yang Y, Ma Y, Li M, Zhu H, Shi P, An R. STUB1 directs FOXQ1-mediated transactivation of Ldha gene and facilitates lactate production in mouse Sertoli cells. Cell Tissue Res 2023; 392:565-579. [PMID: 36575252 DOI: 10.1007/s00441-022-03705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/06/2022] [Indexed: 12/29/2022]
Abstract
Sertoli cells (SCs) preferentially use glucose to convert to lactate. As an energy source, lactate is essential for survival of developed germ cells (GCs) due to its anti-apoptotic effect. Failure to maintain lactate metabolism homeostasis leads to infertility or germ cell apoptosis. Several Sertoli cell-expressed genes, such as Foxq1 and Gata4, have been identified as critical regulators for lactate synthesis, but the pathways that potentially modulate their expression remain ill defined. Although recent work from our collaborators pointed to an involvement of STIP1 homology and U-box-containing protein 1 (STUB1) in the modulation of Sertoli cell response to GCs-derived IL-1α, a true physiological function of STUB1 signaling in SCs has not been demonstrated. We therefore conditionally ablated Stub1 in SCs using Amh-Cre. Stub1 knockout males exhibited impaired fertility due to oligozoospermia and asthenospermia, possibly caused by lactate deficiency. Furthermore, by means of chromatin immunoprecipitation, in vivo ubiquitination, and luciferase reporter assays, we showed that STUB1 directed forkhead box Q1 (FOXQ1)-mediated transactivation of the lactate dehydrogenase A (Ldha) gene via K63-linked non-proteolytic polyubiquitination, thus facilitating lactate production in follicle-stimulating hormone (FSH)-stimulated SCs. In agreement, overexpression of LDHA by lentivirus infection effectively rescued the lactate production in TM4Stub1-/- cells. Our results collectively identify STUB1-mediated transactivation of FOXQ1 signaling as a post-translationally modified transcriptional regulatory network underlying nursery function in SCs, which may nutritionally contribute to Sertoli cell dysfunction of male infertility.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an 710061, Shaanxi, People's Republic of China
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Yuan Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, People's Republic of China
| | - Mao Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, People's Republic of China
| | - Hongli Zhu
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Panpan Shi
- Reproductive Medicine Center, Xi'an People's Hospital (Xi'an NO.4 Hospital), 710004, Shaanxi, People's Republic of China
| | - Ruifang An
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Ma T, Zhou Y, Xia Y, Jin H, Wang B, Wu J, Ding J, Wang J, Yang F, Han X, Li D. Environmentally relevant perinatal exposure to DBP disturbs testicular development and puberty onset in male mice. Toxicology 2021; 459:152860. [PMID: 34280466 DOI: 10.1016/j.tox.2021.152860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is considered as a potential modifier of puberty. However, different results indicate that DBP plays an accelerated, delayed, or neutral role in the initiation of puberty. Furthermore, whether the effect of DBP on puberty will disrupt the function of reproductive system in the adults is still ambiguous. Therefore, we aimed to investigate the effect of maternal exposure to DBP on the onset of puberty in male offspring mice and the subsequent changes in the development of reproductive system. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. Compared with the control group, the 50 mg/kg/day DBP group accelerated puberty onset and testicular development were quite remarkable in male offspring mice during early puberty. Furthermore, in 22-day male offspring mice, 50 mg/kg/day DBP induced increased levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone in serum, and promoted the expression of steroidogenesis-related genes in the testes. Testicular Leydig cells (LCs) were isolated from the testes of 3-week-old mice and treated with 0 (control), 0.1, 1 mM monobutyl phthalate (MBP, the active metabolite of DBP) for 24 h. Consistent with the in vivo results, the expression of steroidogenesis-related genes and testosterone production were increased in LCs following exposure to 0.1 mM MBP. In adulthood, testes of the male offspring mice exposed to all doses of DBP exhibited adverse morphology compared with the control group. These results demonstrated that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and precocious development of the testis, and eventually damaged the reproductive system in the later life.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
5
|
Testicular STAC3 regulates Leydig cell steroidogenesis through potentiating mitochondrial membrane potential and StAR processing. Cell Tissue Res 2021; 384:195-209. [PMID: 33409656 PMCID: PMC8016781 DOI: 10.1007/s00441-020-03312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
SH3 and cysteine-rich protein 3 (STAC3), a small adapter protein originally identified as a core component of excitation–contraction coupling machinery, regulates the voltage-induced Ca2+ release in skeletal muscle. However, the possibility of additional, as yet unknown, non-muscle effects of STAC3 cannot be ruled out. Herein, we provide the evidence for the expression and functional involvement of STAC3 in spermatogenesis. STAC3 expression was localized in the testicular interstitium of rodent and human testes. By using the cytotoxic drug ethylene dimethane sulfonate (EDS), STAC3 expression was observed to be decreased sharply in rat testis after selective withdrawal of Leydig cells (LCs), and reappeared immediately after LCs repopulation, indicating that testicular expression of STAC3 mainly stems from LCs. From a functional standpoint, in vivo lentiviral vector–mediated suppression of STAC3 resulted in a significant decrease in testosterone production, and thereafter caused impairment of male fertility by inducing oligozoospermia and asthenospermia. The indispensible involvement of STAC3 in testicular steroidogenesis was validated using the in vivo knockdown model with isolated primary LCs as well as in vitro experiments with primary LCs. By generating the TM3Stac3−/− cells, we further revealed that STAC3 depletion attenuated mitochondrial membrane potential and StAR processing in db-cAMP-stimulated LCs. Thus, the inhibitory effect of STAC3 deficiency on testicular steroidogenesis may be ascribed to a disturbed mitochondrial homeostasis. Collectively, the present results strongly suggest that STAC3 may function as a novel regulator linking mitochondrial homeostasis and testicular steroidogenesis in LCs. Our data underscore an unexpected reproductive facet of this muscle-derived factor.
Collapse
|
6
|
Interference with lactate metabolism by mmu-miR-320-3p via negatively regulating GLUT3 signaling in mouse Sertoli cells. Cell Death Dis 2018; 9:964. [PMID: 30237478 PMCID: PMC6148074 DOI: 10.1038/s41419-018-0958-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Disruption of the nursery function in Sertoli cells (SCs) by reducing lactate production, a preferred energy substrate for developed germ cells (spermatocytes and spermatids), is tightly associated with spermatogenic failure such as SC-only syndrome (SCOS). However, whether this complicated pathogenesis is regulated by certain miRNAs at the post-transcriptional level remain fascinating but largely unknown. Here we show for the first time that mmu-miR-320-3p was exclusively expressed in murine SCs and this expression was significantly induced in busulphan-treated murine testis. The most efficient stimulatory germ cell types for the induction of apoptosis-elicited mmu-miR-320-3p expression were meiotic spermatocytes and haploid spermatids. Functionally, forced expression of the exogenous mmu-miR-320-3p in SCs compromises male fertility by causing oligozoospermia and defection of sperm mobility. Mechanistically, mmu-miR-320-3p negatively regulates lactate production of SCs by directly inhibiting glucose transporter 3 (GLUT3) expression. Thus, dysregulation of mmu-miR-320-3p/GLUT3 cascade and consequently of lactate deficiency may be a key molecular event contributing the germ cell loss by SC dysfunction. Future endeavor in the continuous investigation of this important circulating miRNA may shed novel insights into epigenetic regulation of SCs nursery function and the etiology of azoospermia, and offers novel therapeutic and prognostic targets for SCOS.
Collapse
|
7
|
Jenardhanan P, Panneerselvam M, Mathur PP. Effect of environmental contaminants on spermatogenesis. Semin Cell Dev Biol 2016; 59:126-140. [DOI: 10.1016/j.semcdb.2016.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
|
8
|
Gao ZJ, Min J, Wu XC, Yang T, Yan CY, Dong BH, Zhang T. Repression of neuronal nitric oxide (nNOS) synthesis by MTA1 is involved in oxidative stress-induced neuronal damage. Biochem Biophys Res Commun 2016; 479:40-7. [PMID: 27603575 DOI: 10.1016/j.bbrc.2016.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/03/2016] [Indexed: 12/14/2022]
Abstract
The Metastasis-associated protein 1 (MTA1) coregulator, an essential component of the nucleosome remodeling and deacetylase (NuRD) complex, potentiates neuroprotective effects against ischemia/reperfusion (I/R) injury. But the underlying mechanism(s) remain largely unknown. Here, we discovered that neuronal MTA1 was a target of oxidative stress, and stimulation of neurons with oxygen glucose deprivation (OGD) treatment significantly inhibited MTA1 expression. Additionally, MTA1 depletion augmented ischemic oxidative stress and thus promoted oxidative stress-induced neuronal cell death by OGD. While studying the impact of MTA1 status on global neuronal gene expression, we unexpectedly discovered that MTA1 may modulate OGD-induced neuronal damage via regulation of distinct nitric oxide synthase (NOS) (namely neuronal NOS, nNOS) signaling. We provided in vitro evidence that NOS1 is a chromatin target of MTA1 in OGD-insulted neurons. Mechanistically, neuronal ischemia-mediated repression of NOS1 expression is accompanied by the enhanced recruitment of MTA1 along with histone deacetylases (HDACs) to the NOS1 promoter, which could be effectively blocked by a pharmacological inhibitor of the HDACs. These findings collectively reveal a previously unrecognized, critical homeostatic role of MTA1, both as a target and as a component of the neuronal oxidative stress, in the regulation of acute neuronal responses against brain I/R damage. Our study also provides a molecular mechanistic explanation for the previously reported neurovascular protection by selective nNOS inhibitors.
Collapse
Affiliation(s)
- Zi-Jun Gao
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Jie Min
- Department of Ophthalmology, Xi'an No. 4 Hospital, Guangren Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xu-Cai Wu
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Tian Yang
- The 1st Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Chang-You Yan
- Xi'an Health Management Service Center, Xi'an 710032, China
| | - Bu-Huai Dong
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China.
| | - Tao Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
9
|
Wang H, Dong BW, Zheng ZH, Wu ZB, Li W, Ding J. Metastasis-associated protein 1 (MTA1) signaling in rheumatoid synovium: Regulation of inflammatory response and cytokine-mediated production of prostaglandin E2 (PGE2). Biochem Biophys Res Commun 2016; 473:442-8. [PMID: 26970310 DOI: 10.1016/j.bbrc.2016.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/13/2023]
Abstract
Abnormal perpetual inflammatory response and sequential cytokine-induced prostaglandin E2 (PGE2) play important roles in the pathogenesis of rheumatoid arthritis (RA). The underlying regulatory mechanism, however, remain largely unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), an important chromatin modifier that plays a critical role in transcriptional regulation by modifying DNA accessibility for cofactors, was upregulated in human rheumatoid synovial tissues. Furthermore, a knockdown of MTA1 by siRNA in the human fibroblast-like synovial cell line MH7A was found to impair the 4-hydroxynonenal (4-HNE)-induced transcriptional expression levels of certain proinflammatory cytokines including IL-1β, TNF-α and IL-6. Moreover, endogenous MTA1 was required for the cytokines-induced PGE2 synthesis by rheumatoid synoviocytes. Collectively, the coordinated existence of MTA1 inside distinct cascade loops points to its indispensable role in the modulation of the integrated cytokine network along the pathogenesis of RA. Further exploration of the functional details of this master transcriptional regulator should be an attractive strategy to identify novel therapeutic target for RA and warrants execution.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Psychology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing-Wei Dong
- Department of Pathology, Xian Yang Central Hospital, Xian Yang, 712000, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Biao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Dong YS, Hou WG, Li Y, Liu DB, Hao GZ, Zhang HF, Li JC, Zhao J, Zhang S, Liang GB, Li W. Unexpected requirement for a binding partner of the syntaxin family in phagocytosis by murine testicular Sertoli cells. Cell Death Differ 2015; 23:787-800. [PMID: 26494466 DOI: 10.1038/cdd.2015.139] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023] Open
Abstract
Testicular phagocytosis by Sertoli cells (SCs) plays an essential role in the efficient clearance of apoptotic spermatogenic cells under both physiological and pathological conditions. However, the molecular mechanism underlying this unique process is poorly understood. Herein, we report for the first time that α-taxilin protein (TXLNA), a binding partner of the syntaxin family that functions as a central player in the intracellular vesicle traffic, was dominantly expressed in SCs. Induction of apoptosis in murine meiotic spermatocytes and haploid spermatids by busulfan treatment stimulated a significant increase of TXLNA in SCs at day (d) 14 and d 24 after busulfan treatment, respectively. Consistently, TXLNA expression was steadily upregulated when SCs were co-cultured with apoptotic germ cells (GCs). Moreover, using siRNA treatment, we found that ablation of endogenous TXLNA significantly impaired the phagocytotic capacity of SCs and thereby resulted in defective spermiogenesis and reduced fertility during the late recovery after testicular heat stress. Mechanistically, upregulation of TXLNA expression by apoptotic GCs was associated with the stabilization of ATP-binding cassette transporter 1 (ABCA1), a transporter-mediated lipid efflux from SCs and influencing male fertility. TXLNA acted as an upstream suppressor of ABCA1 ubiquitination and thus promoted ABCA1 stability and accumulation following GC apoptosis. We further provide in vitro evidence that epidermal growth factor receptor (EGFR)-mediated phosphorylation regulated ABCA1 ubiquitination and was enhanced by TXLNA deficiency during testicular phagocytosis. Taken together, the TXLNA/ABCA1 cascade may serve as an important feedback mechanism to modulate the magnitude of subsequent phagocytotic process of SCs in response to testicular injury.
Collapse
Affiliation(s)
- Y-s Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.,Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China
| | - W-g Hou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Y Li
- Department of Air Logistics, 463rd Hospital of PLA, Shenyang 110042, China
| | - D-b Liu
- Department of Air Logistics, 463rd Hospital of PLA, Shenyang 110042, China
| | - G-z Hao
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - H-f Zhang
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - J-c Li
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - J Zhao
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China
| | - S Zhang
- Department of Gynecology and Obstetrics, Reproductive Medicine Center, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - G-b Liang
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - W Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
11
|
Li W, Fu J, Zhang S, Zhao J, Xie N, Cai G. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis. Toxicol Appl Pharmacol 2015; 285:98-109. [PMID: 25886977 DOI: 10.1016/j.taap.2015.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 01/02/2023]
Abstract
Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli-germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli-germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Nianlin Xie
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China.
| | - Guoqing Cai
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
12
|
Ding J, Wang H, Wu ZB, Zhao J, Zhang S, Li W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biol Reprod 2014; 92:6. [PMID: 25395675 DOI: 10.1095/biolreprod.114.122333] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol in green tea, exerts antiapoptotic activity and prevents tissue damage against different stimuli. Herein, we investigated the effects of EGCG treatment to simultaneously improve spermatogenesis following ionizing radiation (IR) (at a dose of 2 Gy). Mice were intraperitoneally injected with 50 mg/kg EGCG or vehicle control 3 days prior to the irradiation, and the treatment lasted intermittently for 24 days. Supplement with exogenous EGCG protected against short-term germ cell loss and attenuated IR-elicited testicular oxidative stress. Mechanistically, prosurvival effects of EGCG treatment upon IR stress were regulated, at least in part, via the mitogen-activated protein kinase/BCL2 family/caspase 3 pathway. Consistently, at post-IR Day 21, histological analyses revealed tubule damage, desquamation of germ cells, and impairment of caudal parameters in irradiated testis, which could be significantly improved by intermittent EGCG treatment. In addition, long-term EGCG application ameliorated the IR-induced blood-testicular barrier permeability and suppressed testicular steroidogenesis, thus exerting a stimulatory effect on the spermatogenic recovery. Collectively, EGCG appeared to efficiently prevent germ cells from radiation-induced cell death via multiple mechanisms. Employment of this bioactive polyphenol should be an attractive strategy to preserve fertility in males exposed to conventional radiation therapy and warrants further investigation.
Collapse
Affiliation(s)
- Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hui Wang
- School of Preclinical Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhen-Biao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Zhang C, Lai JH, Hu B, Zhang S, Zhao J, Li W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1170-82. [DOI: 10.1016/j.bbagrm.2014.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
14
|
Zhu CJ, Zhang S, Liang Y, Li W. Elicitation of metastasis associated protein 2 expression in the phagocytosis by murine testicular Sertoli cells. Biochem Biophys Res Commun 2014; 445:667-72. [PMID: 24583130 DOI: 10.1016/j.bbrc.2014.02.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
Efficient phagocytic clearance of apoptotic spermatogenic cells and residual bodies (RBs) by Sertoli cells (SCs) is crucial for functional mature spermatogenesis. However, little is known about the molecular mechanisms underlying this SCs function. Herein, we reported for the first time that SCs-expressing metastasis associated protein 2 (Mta2), a chromatin modifier playing a critical role in modifying DNA accessibility for transcriptional regulation, was steadily up-regulated when SCs were co-cultured with RBs. The most efficient stimulatory substrates for the inducement of phagocytosis-elicited Mta2 expression were RBs and fragments from apoptotic spermatocytes. Furthermore, one major result of this response is the transcriptional repression of follicle-stimulating hormone receptor gene (Fshr) expression during phagocytosis, which should lead to a low level of circulated FSH because effects of FSH on spermatogenesis is fundamentally regulated by the down-regulation of Fshr after exposure to FSH. Given that high concentration of circulated FSH inhibits SCs phagocytic activity and impairment of MTA2 expression is associated with the abnormal high level of serum FSH, our present results suggest that the FSH/MTA2/Fshr cascade may serve as an indispensable negative feedback mechanism to help to maintain low level of circulated FSH, which is required for the normal occurrence of SCs phagocytosis.
Collapse
Affiliation(s)
- Chao-Juan Zhu
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China; Department of Emergency Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yuan Liang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Liang Y, Dong Y, Zhao J, Li W. YES1 activation elicited by heat stress is anti-apoptotic in mouse pachytene spermatocytes. Biol Reprod 2013; 89:131. [PMID: 24132961 DOI: 10.1095/biolreprod.113.112235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deregulated expression of protein tyrosine phosphorylation has been implicated in testicular response to different stimuli. Herein, YES1, a nonreceptor protein tyrosine kinase, was found to be significantly up-regulated in pachytene spermatocytes (PS) during early recovery from a transient testicular heat stress. Coculture of PS with Sertoli cells (SCs) could enhance the hyperthermia-induced YES1 activation, indicative of a positive regulation of the paracrine signaling. Moreover, SU6656, a selective YES1 inhibitor, was shown to effectively block YES1 activity, thereafter resulting in a dramatic increase of heat stress-induced apoptosis in primary cultured PS. Mechanistically, the antiapoptotic effect of YES1 activation in response to testicular heat insult may mediate via the regulation of extracellular signal-regulated kinase (ERK)/metastasis-associated 1 (MTA1) cascade. From a clinical standpoint, a notably higher level of YES1 expression was observed in the pathological testis from varicocele patients as compared to a negligible staining in the control group. Taken together, our present results provide the first evidence that the YES1/ERK/MTA1/p53 cascade may serve as a naturally occurring, indispensable self-defensive mechanism maintaining apoptotic balance during meiotic heat stress. Our study may have also partially answered the question of how activation of signal pathways at the cell membrane surface interacts with the key regulatory events occurring in the nucleus during testicular heat shock.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry. Biochem Biophys Res Commun 2013; 440:749-55. [DOI: 10.1016/j.bbrc.2013.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022]
|
17
|
Tian F, Wu YS, Zhao J, Li W. AR3 messenger ribonucleic acid expression and its functional implication in human primary testicular failure. Andrologia 2013; 46:859-66. [PMID: 24124902 DOI: 10.1111/and.12177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
AR3, a major one of androgen receptor (AR) splice variants, has been shown to play a pivotal role in concert with AR signalling in prostate cancer. The present study was undertaken to characterise the expression pattern of AR3 in normal and impaired spermatogenesis. Expression of AR3 mRNA showed significantly lower level in testicular tissues with impaired spermatogenesis when compared to normal tissues. This aberrant expression profile of AR3 in human pathological testes was further confirmed by immunoblotting analysis. Moreover, in situ hybridisation studies revealed that the transcripts of the gene were dominantly localised in the pachytene spermatocytes and round spermatids, suggesting a potential involvement of this transcriptional regulator in the auto-/paracrine regulation of meiotic and post-meiotic differentiation. This hypothesis was strengthened by the observation that AR3 mRNA expression was positively correlated to average seminiferous tubule score and was negatively correlated to serum FSH level. To the best of our knowledge, such a distinct expression profile of AR3 has not been reported previously in human testis. Overall, our data are suggestive of a novel site of action of AR3 during human spermatogenesis and should shed light on the complicated circuit composed of AR and its splice variants.
Collapse
Affiliation(s)
- F Tian
- The Center of Teaching and Experimenting, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|