1
|
Kataoka T, Hotta Y, Kimura K. A review of experimental techniques for erectile function researches and development of medical technology using animal erectile dysfunction models in sexual and reproductive medicine. Reprod Med Biol 2023; 22:e12513. [PMID: 37020643 PMCID: PMC10069627 DOI: 10.1002/rmb2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Background Erectile dysfunction (ED) is one of the causes of male infertility and is a disease that requires treatment. The first-line drugs for ED are phosphodiesterase 5 (PDE-5) inhibitors, and further treatment options are currently limited. Medical technologies, such as genetic control and regenerative medicine, are developing rapidly. Research on erectile function is progressing rapidly, coupled with technological innovations in other areas. Methods A PubMed search using the keywords "animal (rat, mouse, rabbit, dog, and monkey)" and "erectile" was conducted, and all relevant peer-reviewed English results were evaluated. Main findings The methods for evaluating erectile function include intracavernous pressure (ICP) measurements, isometric tension studies, and dynamic infusion cavernosometry. Papers also reported various disease model animals for the study of diabetes mellitus, cavernous nerve injury, and drug-induced ED. Conclusion Basic research on ED treatment has progressed rapidly over the past 20 years. In particular, research on the mechanism of ED has been accelerated by the publication of a study on the evaluation of erectile function using ICP measurements in rats. In addition, molecular biological experimental methods such as polymerase chain reaction (PCR) and western blotting have become relatively easy to perform due to technological progress, thus advancing research development.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesChiba Institute of Science15‐8 Shiomi‐choChoshiChiba288‐0025Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical SciencesNagoya City University1‐Kawasumi, Mizuho‐cho, Mizuho‐kuNagoya467‐8601Japan
| |
Collapse
|
2
|
Azeez T, Andrade M, La Favor J. Optimal Wire Myography Normalization for the Rat Dorsal Penile, Internal Pudendal and Internal Iliac Arteries. Physiol Res 2021. [DOI: 10.33549//physiolres.934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In functional arterial studies using wire myography, the determination of a vessel’s standardized normalization factor (factor k) is an essential step to ensure optimal contraction and relaxation by the arteries when stimulated with their respective vasoactive agents and to obtain reproducible results. The optimal factor k for several arteries have been determined; however, the optimal initial tension and factor k for the arteries involved in erection remains unknown. Hence, in the present study we set out to determine the optimal factor k for the internal iliac artery, proximal and distal internal pudendal artery (IPA), and dorsal penile artery. After isolating, harvesting, and mounting the arteries from male Sprague-Dawley rats on a multi wire myograph, we tested arterial responsivity to high K+-stimulation when the factor k was set at 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, and 1.2 to determine the factor k setting that results in the greatest K+-induced active force production for each vessel type. The data showed the optimal factor k is 0.90-0.95 for the dorsal penile, distal internal pudendal and internal iliac arteries while it is 0.85-0.90 for proximal internal pudendal artery. These optimal values corresponded to initial passive tension settings of 1.10±0.16 - 1.46±0.23, 1.28±0.20 - 1.69±0.34, 1.03±0.27 - 1.33±0.31, and 1.33±0.31 - 1.77±0.43 mN/mm for the dorsal penile, distal IP, proximal IP, and internal iliac arteries, respectively.
Collapse
Affiliation(s)
| | | | - J.D. La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, U.S.A.
| |
Collapse
|
3
|
Azeez TA, Andrade MR, La Favor JD. Optimal Wire Myography Normalization for the Rat Dorsal Penile, Internal Pudendal and Internal Iliac Arteries. Physiol Res 2021; 70:931-937. [PMID: 34717069 DOI: 10.33549/physiolres.934714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In functional arterial studies using wire myography, the determination of a vessel's standardized normalization factor (factor k) is an essential step to ensure optimal contraction and relaxation by the arteries when stimulated with their respective vasoactive agents and to obtain reproducible results. The optimal factor k for several arteries have been determined; however, the optimal initial tension and factor k for the arteries involved in erection remains unknown. Hence, in the present study we set out to determine the optimal factor k for the internal iliac artery, proximal and distal internal pudendal artery (IPA), and dorsal penile artery. After isolating, harvesting, and mounting the arteries from male Sprague-Dawley rats on a multi wire myograph, we tested arterial responsivity to high K+-stimulation when the factor k was set at 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, and 1.2 to determine the factor k setting that results in the greatest K+-induced active force production for each vessel type. The data showed the optimal factor k is 0.90-0.95 for the dorsal penile, distal internal pudendal and internal iliac arteries while it is 0.85-0.90 for proximal internal pudendal artery. These optimal values corresponded to initial passive tension settings of 1.10±0.16 - 1.46±0.23, 1.28±0.20 - 1.69±0.34, 1.03±0.27 - 1.33±0.31, and 1.33±0.31 - 1.77±0.43 mN/mm for the dorsal penile, distal IP, proximal IP, and internal iliac arteries, respectively.
Collapse
Affiliation(s)
- T A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, U.S.A.
| | | | | |
Collapse
|
4
|
Ștefan MG, Kiss B, Gutleb AC, Loghin F. Redox metabolism modulation as a mechanism in SSRI toxicity and pharmacological effects. Arch Toxicol 2020; 94:1417-1441. [PMID: 32246176 DOI: 10.1007/s00204-020-02721-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Depressive disorders are amongst the greatest mental health challenges, with an increasing number of patients being diagnosed each year. Though it has not yet been fully elucidated, redox metabolism imbalances and oxidative stress seem to play a major role in the pathogenesis of depressive disorders. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressants, considered to have a better tolerability. However, several adverse effects have been reported and the mechanisms involved in their pharmacological activity are not entirely understood. SSRIs have been shown to influence the redox metabolism, which could be involved in their toxicity and pharmacological effects. A comparative analysis of published in vivo and in vitro data regarding the activity of SSRIs on the redox metabolism pathways has been performed in this paper, with an emphasis on mechanistical aspects. Furthermore, a comparison between oxidative stress biomarker levels reported by different studies was attempted. The reviewed data point towards both pro- and antioxidant effects of SSRIs, dependent on tissue/cell type and dose/concentration, suggest a redox modulating potential of these compounds. In hepatic and testicular tissue, the majority of reviewed studies reported pro-oxidant effects, with possible implications towards the hepatotoxicity and sexual dysfunction that were reported following SSRI treatment; while in brain, the most common findings were antioxidant effects that could partially explain their antidepressant activity. However, given the heterogeneity of the reviewed data, further research is needed to fully understand the impact of SSRIs on redox metabolism and its implications.
Collapse
Affiliation(s)
- Maria-Georgia Ștefan
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Béla Kiss
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Arno C Gutleb
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Environmental Health Group, Esch-sur-Alzette, Luxembourg
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
|
6
|
Gul A, Pastuszak A, Kabasakal L, Bates J, Altinay S, Celik DS, Semercioz A, Serefoglu EC. Tadalafil Preserves Penile Nitric Oxide Synthase from Detrimental Effect of Paroxetine in Rats. Eurasian J Med 2019; 51:60-63. [PMID: 30911259 PMCID: PMC6422627 DOI: 10.5152/eurasianjmed.2018.18160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Paroxetine is a commonly prescribed SSRI that can impair erectile function in animal models via inhibition of nitric oxide synthase (NOS). Tadalafil potentiates nitric oxide (NO)-mediated responses in isolated trabecular smooth muscle and penile erection. The purpose of this study was to evaluate the impact of co-administering tadalafil with paroxetine on penile NOS levels in rats. MATERIALS AND METHODS A total of 30 male Sprague-Dawley rats were divided into 3 groups as control (Group-C), paroxetine (Group-P) and paroxetine plus tadalafil (Group-P+T). After 28 days of treatment, rats were sacrificed and their penile tissues were harvested for analysis. NOS isoform protein levels and immunoreactivity scores of NOS were assessed. Statistical significance level was set at p<0.05. RESULTS Neuronal NOS (nNOS) levels were significantly decreased in group-P, compared with group-C (p<0.001). In comparison, rats in group-P+T had significantly higher nNOS levels compared to group-P (p<0.001). Endothelial NOS (eNOS) and inducible NOS (iNOS) levels were significantly higher in group-P compared with group-C (p<0.01). The levels of eNOS and iNOS in group-P+T were similar to group-C. CONCLUSION Daily treatment with tadalafil prevented chronic paroxetine-induced changes in all three NOS isoform levels. Tadalafil treatment may therefore be a useful therapy in men with paroxetine-associated erectile dysfunction.
Collapse
Affiliation(s)
- Abdullah Gul
- Department of Urology, University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | | | - Levent Kabasakal
- Department of Pharmacology, Marmara University School of Pharmacy, Istanbul, Turkey
| | - Jenna Bates
- Baylor College of Medicine, Houston, TX, USA
| | - Serdar Altinay
- Department of Patology, University of Health Sciences, Bakirkoy Training and Research Hospital, Istanbul, Turkey
| | - Duygu Sultan Celik
- Department of Comparative Medicine, University of Health Sciences, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Atilla Semercioz
- Department of Urology, University of Health Sciences, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Ege Can Serefoglu
- Department of Urology, University of Health Sciences, Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Post-SSRI Sexual Dysfunction: Preclinical to Clinical. Is It Fact or Fiction? Sex Med Rev 2018; 6:217-223. [DOI: 10.1016/j.sxmr.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/12/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
|
8
|
Hu Y, Niu X, Wang G, Huang J, Liu M, Peng B. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology 2016; 4:1209-1216. [PMID: 27565759 DOI: 10.1111/andr.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Y. Hu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - X. Niu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - G. Wang
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - J. Huang
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - M. Liu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - B. Peng
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| |
Collapse
|
9
|
Tuken M, Kiremit MC, Serefoglu EC. On-demand Modafinil Improves Ejaculation Time and Patient-reported Outcomes in Men With Lifelong Premature Ejaculation. Urology 2016; 94:139-42. [DOI: 10.1016/j.urology.2016.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 11/27/2022]
|
10
|
Schiavone S, Neri M, Mhillaj E, Morgese MG, Cantatore S, Bove M, Riezzo I, Tucci P, Pomara C, Turillazzi E, Cuomo V, Trabace L. The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post mortem brain samples. Transl Psychiatry 2016; 6:e813. [PMID: 27187235 PMCID: PMC5070044 DOI: 10.1038/tp.2016.76] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/26/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022] Open
Abstract
Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention.
Collapse
Affiliation(s)
- S Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy,Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy. E-mail:
| | - M Neri
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Mhillaj
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - M G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - S Cantatore
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - M Bove
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - I Riezzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - P Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - C Pomara
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Turillazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V Cuomo
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - L Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
|
12
|
Gokce A. Editorial Comment. Urology 2015; 86:764-5. [PMID: 26343237 DOI: 10.1016/j.urology.2015.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ahmet Gokce
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| |
Collapse
|