1
|
Zhu X, Farsh T, Vis D, Yu I, Li H, Liu T, Sjöström M, Shrestha R, Kneppers J, Severson T, Zhang M, Lundberg A, Moreno Rodriguez T, Weinstein AS, Foye A, Mehra N, Aggarwal RR, Bergman AM, Small EJ, Lack NA, Zwart W, Quigley DA, van der Heijden MS, Feng FY. Genomic and transcriptomic features of androgen receptor signaling inhibitor resistance in metastatic castration-resistant prostate cancer. J Clin Invest 2024; 134:e178604. [PMID: 39352383 PMCID: PMC11444163 DOI: 10.1172/jci178604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUNDAndrogen receptor signaling inhibitors (ARSIs) have improved outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC), but their clinical benefit is limited by treatment resistance.METHODSTo investigate the mechanisms of ARSI resistance, we analyzed the whole-genome (n = 45) and transcriptome (n = 31) sequencing data generated from paired metastatic biopsies obtained before initiation of first-line ARSI therapy for mCRPC and after radiographic disease progression. We investigated the effects of genetic and pharmacologic modulation of SSTR1 in 22Rv1 cells, a representative mCRPC cell line.RESULTSWe confirmed the predominant role of tumor genetic alterations converging on augmenting androgen receptor (AR) signaling and the increased transcriptional heterogeneity and lineage plasticity during the emergence of ARSI resistance. We further identified amplifications involving a putative enhancer downstream of the AR and transcriptional downregulation of SSTR1, encoding somatostatin receptor 1, in ARSI-resistant tumors. We found that patients with SSTR1-low mCRPC tumors derived less benefit from subsequent ARSI therapy in a retrospective cohort. We showed that SSTR1 was antiproliferative in 22Rv1 cells and that the FDA-approved drug pasireotide suppressed 22Rv1 cell proliferation.CONCLUSIONOur findings expand the knowledge of ARSI resistance and point out actionable next steps, exemplified by potentially targeting SSTR1, to improve patient outcomes.FUNDINGNational Cancer Institute (NCI), NIH; Prostate Cancer Foundation; Conquer Cancer, American Society of Clinical Oncology Foundation; UCSF Benioff Initiative for Prostate Cancer Research; Netherlands Cancer Institute.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Transcriptome
- Neoplasm Metastasis
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Androgen Receptor Antagonists/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Tatyanah Farsh
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Daniël Vis
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivan Yu
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Tianyi Liu
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tesa Severson
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Thaidy Moreno Rodriguez
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Urology, UCSF, San Francisco, California, USA
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rahul R. Aggarwal
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Andries M. Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Nathan A. Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Koç University School of Medicine, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Urology, UCSF, San Francisco, California, USA
| | | | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| |
Collapse
|
2
|
Sáez-Martínez P, Porcel-Pastrana F, Pérez-Gómez JM, Pedraza-Arévalo S, Gómez-Gómez E, Jiménez-Vacas JM, Gahete MD, Luque RM. Somatostatin, Cortistatin and Their Receptors Exert Antitumor Actions in Androgen-Independent Prostate Cancer Cells: Critical Role of Endogenous Cortistatin. Int J Mol Sci 2022; 23:ijms232113003. [PMID: 36361790 PMCID: PMC9654089 DOI: 10.3390/ijms232113003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Jesús M. Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Sergio Pedraza-Arévalo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Correspondence:
| |
Collapse
|
3
|
Novel Target Opportunities in Non-Metastatic Castrate Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102426. [PMID: 34067832 PMCID: PMC8157020 DOI: 10.3390/cancers13102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Nearly one third of men will incur biochemical recurrence after treatment for localized prostate cancer. Androgen deprivation therapy (ADT) is the therapeutic mainstay; however, some patients will transition to a castrate resistant state (castrate resistant prostate cancer, CRPC). Subjects with CRPC may develop symptomatic metastatic disease (mCRPC) and incur mortality several years later. Prior to metastatic disease, however, men acquire non-metastatic CRPC (nmCRPC) which lends the unique opportunity for intervention to delay disease progression and symptoms. This review addresses current therapies for nmCRPC, as well as novel therapeutics and pathway strategies targeting men with nmCRPC.
Collapse
|
4
|
Sáez-Martínez P, Jiménez-Vacas JM, León-González AJ, Herrero-Aguayo V, Montero Hidalgo AJ, Gómez-Gómez E, Sánchez-Sánchez R, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. J Clin Med 2020; 9:E1703. [PMID: 32498336 PMCID: PMC7355908 DOI: 10.3390/jcm9061703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient's cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Anatomical Pathology Service, HURS, 14004 Cordoba, Spain
| | - María J. Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (A.J.L.-G.); (V.H.-A.); (A.J.M.H.); (E.G.-G.); (R.S.-S.); (M.J.R.-T.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14071 Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
5
|
Wang X, Liu Y, Zhao J, Zhang J. Clinical efficacy of octreotide acetate combined with thrombin in the treatment of liver cirrhosis complicated with gastrointestinal hemorrhage. Exp Ther Med 2019; 17:3417-3422. [PMID: 30988720 PMCID: PMC6447786 DOI: 10.3892/etm.2019.7345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/11/2019] [Indexed: 12/10/2022] Open
Abstract
Clinical efficacy of octreotide acetate combined with thrombin in the treatment of liver cirrhosis complicated with gastrointestinal hemorrhage was investigated. A retrospective analysis of 157 patients with liver cirrhosis and gastrointestinal hemorrhage admitted to Weifang People's Hospital from March 2012 to September 2014 was performed. Among them, 74 patients treated with octreotide acetate were enrolled into the octreotide group, and 83 patients treated with octreotide acetate combined with thrombin were enrolled into the combination group. Comparison between the two groups was made in terms of the average hemostasis time, the hospitalization time, the amount of blood transfusion during hospitalization, the efficacy of hemostasis and visual analog scale (VAS) scores. The mean hemostasis time of the octreotide group was higher than that of the combination group, with a statistically significant difference between the two groups (P<0.05); the hospitalization time of the octreotide group was significantly longer than that of the combination group (P<0.05); the blood transfusion volume of patients in the octreotide group was significantly higher than that of the combination group (P<0.05); the overall effective rate of the combination group after treatment was higher than the overall effective rate of the octreotide group (89.19%) (P<0.05). The VAS scores of the combination group at 24 and 72 h after treatment were lower than those of the octreotide group (P<0.05); the VAS scores of both the octreotide and the combination group at 24 and 72 h after treatment were significantly lower than those before treatment (P<0.05). In conclusion, the combination of octreotide acetate and thrombin is worthy of clinical promotion as it could reduce the average hemostasis time, the bleeding volume, and the hospitalization time of patients with liver cirrhosis combined with gastrointestinal hemorrhage, with better efficacy than the use of octreotide acetate alone.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Hepatological Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanyan Liu
- Department of Hepatological Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jingjing Zhao
- Department of Hepatological Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jinmei Zhang
- Department of Hepatological Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
6
|
Management of non-metastatic castrate-resistant prostate cancer: A systematic review. Cancer Treat Rev 2018; 70:223-231. [DOI: 10.1016/j.ctrv.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/13/2023]
|
7
|
Hormaechea-Agulla D, Jiménez-Vacas JM, Gómez-Gómez E, L-López F, Carrasco-Valiente J, Valero-Rosa J, Moreno MM, Sánchez-Sánchez R, Ortega-Salas R, Gracia-Navarro F, Culler MD, Ibáñez-Costa A, Gahete MD, Requena MJ, Castaño JP, Luque RM. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer. FASEB J 2017; 31:4682-4696. [PMID: 28705809 DOI: 10.1096/fj.201601264rrr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
sst5TMD4, a splice variant of the sst5 gene, is overexpressed and associated with aggressiveness in various endocrine-related tumors, but its presence, functional role, and mechanisms of actions in prostate cancer (PCa)-the most common cancer type in males-is completely unexplored. In this study, formalin-fixed, paraffin-embedded prostate pieces from patients with localized PCa, which included tumoral and nontumoral adjacent regions (n = 45), fresh biopsies from patients with high-risk PCa (n = 52), and healthy fresh prostates from cystoprostatectomies (n = 14) were examined. In addition, PCa cell lines and xenograft models were used to determine the presence and functional role of sst5TMD4. Results demonstrated that sst5TMD4 is overexpressed (mRNA/protein) in PCa samples, and this is especially drastic in metastatic and/or high Gleason score tumor samples. Remarkably, sst5TMD4 expression was associated with an altered frequency of 2 single-nucleotide polymorphisms: rs197055 and rs12599155. In addition, PCa cell lines and xenograft models were used to demonstrate that sst5TMD4 overexpression increases cell proliferation and migration in PCa cells and induces larger tumors in nude mice, whereas its silencing decreased proliferation and migration. Remarkably, sst5TMD4 overexpression activated multiple intracellular pathways (ERK/JNK, MYC/MAX, WNT, retinoblastoma), altered oncogenes and tumor suppressor gene expression, and disrupted the normal response to somatostatin analogs in PCa cells. Altogether, we demonstrate that sst5TMD4 is overexpressed in PCa, especially in those patients with a worse prognosis, and plays an important pathophysiologic role in PCa, which suggesting its potential as a biomarker and/or therapeutic target.-Hormaechea-Agulla, D., Jiménez-Vacas, J. M., Gómez-Gómez, E., L.-López, F., Carrasco-Valiente, J., Valero-Rosa, J., Moreno, M. M., Sánchez-Sánchez, R., Ortega-Salas, R., Gracia-Navarro, F., Culler, M. D., Ibáñez-Costa, A., Gahete, M. D., Requena, M. J., Castaño, J. P., Luque, R. M. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - José Valero-Rosa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - María M Moreno
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | | | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - María J Requena
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| |
Collapse
|
8
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
9
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
10
|
Rozet F, Roumeguère T, Spahn M, Beyersdorff D, Hammerer P. Non-metastatic castrate-resistant prostate cancer: a call for improved guidance on clinical management. World J Urol 2016; 34:1505-1513. [DOI: 10.1007/s00345-016-1803-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
|
11
|
Savelli G, Muni A, Falchi R, Zaniboni A, Barbieri R, Valmadre G, Minari C, Casi C, Rossini P. Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207238 DOI: 10.3978/j.issn.2305-5839.2015.06.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PC) is usually characterized by an excellent prognosis, largely due to little biological aggressiveness and the power of hormonal deprivation therapy. In spite of these favorable characteristics, however, a significant quota of patients does not respond to androgen deprivation therapy (ADT) and develop a progressive disease. Castration-resistant prostate cancer (CRPC) is defined by disease progression in spite of ADT. This progression may show any combination of a rise in serum prostate-specific antigen (PSA), clinical and radiological progression of pre-existing disease, and appearance of new metastases. This event is a striking change in the clinical scenario, since the power of treatment for CRPC patients with distant metastases is very limited. Somatostatin is a hormone produced by neuroendocrine cells. Its distant effects are mediated by the binding to five specific receptors, which are the most striking parameter for neuroendocrine. Various synthetic somatostatin agonists able to bind to the receptors have been synthesized during the past two decades for diagnostic and therapeutic purposes. Octreotide, the most popular of these, is widely used to treat patients affected by neuroendocrine tumors. A number of researches carried out in the past evaluated the possible neuroendocrine differentiation (NED) of PC cells in the castration resistant phase. If proved, the presence of a specific class of receptor on cell's surfaces should give a potentially biological target to be used for therapy. However, these studies led to contradictory results. Aim of our phase III diagnostic trial was to study "in vivo" the over-expression of somatostatin receptors (SSTRs) in CRPC patients by PET/CT after the administration of the somatostatin analog [(68)Ga-DOTANOC,1-Nal(3)]-octreotide labeled with (68)Ga. Every area of increased uptake corresponding to a metastasis detected with other methods was considered as SSTRs expressing. False positivity to SSTRs expression was considered those localizations with a suspicious uptake not confirmed by other radiologic procedures. On the other hand, metastatic lesions lacking the radiopharmaceutical's uptake were considered not SSTRs expressing metastases. The preliminary results in 6 of the 67 patients scheduled by our phase III trial showed metastases with a variable SSTRs expression in 2 patients.
Collapse
Affiliation(s)
- Giordano Savelli
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Alfredo Muni
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Roberta Falchi
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Alberto Zaniboni
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Roberto Barbieri
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Giuseppe Valmadre
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Chiara Minari
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Camilla Casi
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| | - Pierluigi Rossini
- 1 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 2 Nuclear Medicine Division, SS. Antonio e Biagio e C.Arrigo City Hospital, Alessandria, Italy ; 3 Nuclear Medicine Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 4 Medical Oncology Division, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy ; 5 Oncology Unit, "Carlo Poma" Hospital, Mantua, Italy ; 6 Medical Oncology Division, Presidio Ospedaliero E. Morelli AOVV, Sondrio, Italy ; 7 Medical Physiscs Division, "Carlo Poma" Hospital, Mantua, Italy ; 8 Medical Oncology Division, Medical Oncology Department, Val d'Elsa Hospital, Siena, Italy ; 9 Nuclear Medicine Division, "Carlo Poma" Hospital, Mantua, Italy
| |
Collapse
|
12
|
Gilis‐Januszewska A, Trofimiuk‐Müldner M, Jabrocka‐Hybel A, Pach D. Somatostatin Analogues Use in Other than Endocrine Tumor Indications. SOMATOSTATIN ANALOGUES 2015:198-206. [DOI: 10.1002/9781119031659.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Santoni M, Conti A, Burattini L, Berardi R, Scarpelli M, Cheng L, Lopez-Beltran A, Cascinu S, Montironi R. Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:630-637. [PMID: 25450825 DOI: 10.1016/j.bbcan.2014.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that commonly arises in later stages of castration resistant prostate cancer (CRPC) The detection of NEPC has clinical implications as these patients are often treated with platinum chemotherapy rather than with androgen receptor targeted therapies. The poor molecular characterization of NEPC accounts in part for the lack of disease specific therapeutics. Several mechanisms are involved in NE differentiation, including inflammation and autophagy, and may actually represent future therapeutic targets for advanced NEPC patients. Furthermore, a growing body of evidence suggests a potential role of circulating tumor cells in the early diagnosis and treatment of NEPC. Here we summarize the recent findings on NEPC pathogenesis and we discuss the ongoing clinical trials and future perspectives for the treatment of NEPC patients.
Collapse
Affiliation(s)
- Matteo Santoni
- Clinica di Oncologia Medica, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy.
| | - Alessandro Conti
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Clinica di Urologia, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy
| | - Luciano Burattini
- Clinica di Oncologia Medica, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Rossana Berardi
- Clinica di Oncologia Medica, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Unit of Anatomic Pathology, Department of Surgery, Faculty of Medicine, Cordoba Spain; Fundação Champalimaud, Lisbon, Portugal
| | - Stefano Cascinu
- Clinica di Oncologia Medica, AOU Ospedali Riuniti, Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
14
|
Reply from Authors re: Robert J. Hamilton. Metformin for Castrate-resistant Prostate Cancer: Learning More About an Old Dog's New Tricks. Eur Urol 2014;66:475–7. Eur Urol 2014. [DOI: 10.1016/j.eururo.2014.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Hong JH, Kim IY. Nonmetastatic castration-resistant prostate cancer. Korean J Urol 2014; 55:153-60. [PMID: 24648868 PMCID: PMC3956942 DOI: 10.4111/kju.2014.55.3.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
After the introduction of prostate cancer screening with the prostate-specific antigen (PSA) test, we have witnessed a dramatic stage migration. As a result, an increasing number of patients are diagnosed at earlier stages and receive local treatments including surgery or radiation. When these local treatments fail by the definition of increasing PSA levels, patients are usually treated with androgen-deprivation therapy. A fraction of these patients will finally reach a state of castration-resistant prostate cancer (CRPC) even without radiological evidence of metastasis, which is referred to as nonmetastatic CRPC (NM-CRPC). Most men with advanced or metastatic prostate cancer initially respond to various types of androgen ablation, but a considerable portion of them eventually progress to NM-CRPC. Among patients with NM-CPRC, about one-third will develop bone metastasis within 2 years. In these patients, PSA kinetics is the most powerful indicator of progression and is usually used to trigger further imaging studies and enrollment in clinical trials. Although CRPC remains largely driven by the androgen receptor, the benefit of second-line hormonal manipulations, including first-generation antiandrogens, adrenal synthesis inhibitors, and steroids, has not been investigated in men with NM-CRPC. To date, denosumab is the only agent that has been shown to delay the onset of bone metastasis. However, overall survival did not differ. In treating NM-CRPC patients, physicians should recognize the heterogeneity of the disease and acknowledge that the recently approved second-line treatments have been studied only in advanced stages of the disease.
Collapse
Affiliation(s)
- Jun Hyuk Hong
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Isaac Y Kim
- Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release 2013; 172:715-29. [PMID: 24144918 DOI: 10.1016/j.jconrel.2013.10.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/17/2023]
Abstract
Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations.
Collapse
Affiliation(s)
- Amit Alexander
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India.
| | | | | | | | | |
Collapse
|
17
|
Peptide receptor targeting in cancer: the somatostatin paradigm. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:926295. [PMID: 23476673 PMCID: PMC3582104 DOI: 10.1155/2013/926295] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1–5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.
Collapse
|
18
|
Xu Y, Jiang Y, Wu B. New Agonist- and Antagonist-Based Treatment Approaches for Advanced Prostate Cancer. J Int Med Res 2012; 40:1217-26. [PMID: 22971474 DOI: 10.1177/147323001204000401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increased understanding of prostate cancer biology has led to new treatment strategies and promising new agents for treating prostate cancer, in particular peptide-based agonists and antagonists. In this review article, new therapy modalities and potential approaches for the treatment of advanced prostate cancer are discussed, including agonists and antagonists of luteinizing hormone-releasing hormone, antagonists of bombesin/gastrin-releasing peptide, and growth hormone-releasing hormone and somatostatin analogues. Though the prognosis of patients with prostate cancer is much improved by some of these treatment approaches, including combination treatment methods, extensive side-effects are still reported. These include sexual dysfunction, functional lesions of the liver and renal system, osteoporosis, anaemia and diarrhoea. Future studies should focus on new treatment agents and treatment approaches that can eliminate side-effects and improve quality of life in patients with prostate cancer on the basis of potent treatment efficacy.
Collapse
Affiliation(s)
- Y Xu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yf Jiang
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - B Wu
- Department of Urology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| |
Collapse
|
19
|
Screening of well-established drugs targeting cancer metabolism: reproducibility of the efficacy of a highly effective drug combination in mice. Invest New Drugs 2011; 30:1331-42. [DOI: 10.1007/s10637-011-9692-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 01/11/2023]
|