1
|
Isaac P, Cullen H, Emily T, Elisabeth H, Avraham R, Aliccia BF. Prostate cancer-specific proinflammatory cytokines and chemokines impact on cancer stem cell development, lineage plasticity and heterogeneity in an Ancestral/racially diverse population: review. Cancer Metastasis Rev 2025; 44:41. [PMID: 40106077 DOI: 10.1007/s10555-025-10259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Since 1976, Surveillance Epidemiology End Results (SEER) began collecting ethnicity data for the National Cancer Institute. The incidence of prostate cancer (PCa) among African American men (AAM) has been 60-70% higher than any other ethnicity and mortality rate 2 to 3 times greater than European American men (EAM), and those data have not changed. We reported in 2010 that PCa grows faster among AAM compared to EAM. In 2013, we utilized bioinformatics and ingenuity gene network analysis and in silico analysis to identify driver genes responsible for "racial" disparity. Genes associated with lipid metabolism were more expressed among EAM and genes associated with inflammation were more expressed among AAM. In 2021, we unraveled the network of the Ingenuity gene analysis and reported that the inflammatory genes, specifically proinflammatory cytokines and chemokines initiated multiple pathways. A literature review of these pathways showed that they induce castrate-resistant PCa (CRPC), metastasis, oxidative stress, DNA damage, cancer stem cells, lineage plasticity, and tumor heterogeneity. These genes and processes will be discussed in detail as to how they are initiated by proinflammatory cytokines and chemokines and how they act in a domino effect. Most importantly, how lineage plasticity changes the chemistry of the cancer stem cells of the original PCa so that it is no longer recognized by current therapy, chemotherapy, and immunotherapy. This suggests a paradigm change of current therapy is necessary to significantly reduce mortality of advanced PCa.
Collapse
Affiliation(s)
- Powell Isaac
- Wayne State University Medical School, Detroit, USA.
- Karmanos Cancer Institute, Detroit, USA.
| | | | - Teslow Emily
- Wayne State University Medical School, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
| | - Heath Elisabeth
- Wayne State University Medical School, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
| | - Raz Avraham
- Wayne State University Medical School, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
| | - Bollig-Fischer Aliccia
- Wayne State University Medical School, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
| |
Collapse
|
2
|
Wu S, Chen Y, Jin X, Yu J, Chen X, Wan T. Toll Like Receptors Promote High Glucose-Induced Vascular Endothelial Cell Dysfunction by Regulating Neutrophil Extracellular Traps Formation. Inflammation 2025:10.1007/s10753-025-02283-8. [PMID: 40087251 DOI: 10.1007/s10753-025-02283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Diabetic retinopathy (DR) is a major cause of blindness globally. Neutrophils and neutrophil extracellular traps (NETs) are believed to play a role in the development of DR. However, the specific contribution of NETs to hyperglycemia-induced vascular endothelial cell dysfunction remains unclear. In this study, we cocultured high glucose-activated neutrophils (HGNs) with human umbilical vein endothelial cells (HUVECs) to investigate the role of NETs in high glucose-induced HUVEC dysfunction. Our findings indicate that high glucose levels promote NETs formation, which can be inhibited by a toll-like receptor (TLR) 2 antagonist and a TLR4 antagonist. It was observed that reactive oxygen species production plays a role in TLR2- but not TLR4-mediated NETs formation. Additionally, HGNs were found to promote HUVEC proliferation through phagocytosis rather than NETs. We also discovered that NETs contribute to high glucose-induced HUVEC dysfunction by enhancing neutrophil-HUVEC adhesion, inhibiting HUVEC migration, and compromising the barrier function of the cells by reducing zonula occludens-1 expression. This dysfunction could be partially mitigated by TLR2 and TLR4 antagonists. In conclusion, high glucose stimulates NETs formation, leading to vascular endothelial cell damage, and TLRs may facilitate high glucose-induced endothelial dysfunction by modulating NETs formation.
Collapse
Affiliation(s)
- Shirou Wu
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yahui Chen
- Quintiles Medical Research & Development Beijing Ltd, Liangshuihe No.2 Street, Beijing, 100176, China
| | - Xiuming Jin
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Jiayun Yu
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xueping Chen
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Ting Wan
- Eye Center of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Bonolo de Campos C, McCabe CE, Bruins LA, O'Brien DR, Brown S, Tschumper RC, Allmer C, Zhu YX, Rabe KG, Parikh SA, Kay NE, Yan H, Cerhan JR, Allan JN, Furman RR, Weinberg JB, Brander DM, Jelinek DF, Chesi M, Slager SL, Braggio E. Genomic characterization of chronic lymphocytic leukemia in patients of African ancestry. Blood Cancer J 2025; 15:14. [PMID: 39910036 PMCID: PMC11799526 DOI: 10.1038/s41408-024-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the considerable effort to characterize the genomic landscape of chronic lymphocytic leukemia (CLL), published data have been almost exclusively derived from patients of European Ancestry (EA), with significant underrepresentation of minorities, including patients of African Ancestry (AA). To begin to address this gap, we evaluated whether differences exist in the genetic and transcriptomic features of 157 AA and 440 EA individuals diagnosed with CLL. We sequenced 59 putative driver genes and found an increased frequency of high-impact mutations in AA CLL, including genes of the DNA damage repair (DDR) pathway. Telomere erosion was also increased in AA CLL, amplifying the notion of increased genomic instability in AA CLL. Furthermore, we found transcription enrichment of the Tumor Necrosis Factor-alpha (TNFα) Signaling via NF-κB pathway in AA CLL compared to EA CLL, suggesting that tumor promoting inflammation plays an important role in AA CLL. In summary, these results suggest that genomic instability and NF-kB activation is more prevalent in AA CLL than EA CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/ethnology
- Female
- Male
- Genomic Instability
- Middle Aged
- Aged
- Genomics/methods
- NF-kappa B/metabolism
- NF-kappa B/genetics
- Mutation
- Black People/genetics
- White People/genetics
- Aged, 80 and over
- Black or African American/genetics
Collapse
Affiliation(s)
| | - Chantal E McCabe
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Laura A Bruins
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daniel R O'Brien
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Sochilt Brown
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kari G Rabe
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Neil E Kay
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - John N Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Richard R Furman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J Brice Weinberg
- Divisions of Hematology and Hematologic Malignancies & Cellular Therapy & VA Medical Center, Durham, NC, USA
| | - Danielle M Brander
- Division of Hematologic Malignancy and Cellular Therapy, Duke Cancer Institute, Durham, NC, USA
| | | | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Shiozawa Y, Parajuli KR, Pienta K, Taichman R. Role of Chemokines and Cytokines in Prostate Cancer Skeletal Metastasis. Curr Osteoporos Rep 2024; 23:3. [PMID: 39585513 DOI: 10.1007/s11914-024-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Once prostate cancer (PCa) bone metastases develop, the prognosis dramatically declines. The precise mechanisms regulating bone metastasis remain elusive. This review will explore recent findings related to cytokines and chemokines in the process of bone metastases. RECENT FINDINGS We discuss the role of cytokines in tumor growth, invasion, bone remodelling and angiogenesis and immune regulation in PCa skeletal metastases. Major advances in our understanding focus on immune evasion, immune checkpoint blockade, tumor-associated macrophages (TAMs), CAR-T cells, cytokine regulation of matrix metalloproteinases, cytokines including IL-10, IL-27, Interferon-γ, prostate transmembrane protein androgen induced 1 (Pmepa1), and regulation of RUNX2 transcription in supporting survival and growth of disseminated tumor cells (DTCs) and metastases development. The review highlights the complexity of cytokine actions in PCa bone metastases, suggesting potential therapeutic targets to disrupt interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA.
| | - Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Pienta
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Russell Taichman
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA.
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Basic & Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Sasaki T, Yoshikawa Y, Kageyama T, Sugino Y, Kato M, Masui S, Nishikawa K, Inoue T. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells. Prostate 2023; 83:364-375. [PMID: 36479717 DOI: 10.1002/pros.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/22/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Androgen receptor splice variant (AR-V) expression has been associated with prostate cancer (PCa) progression to castration-resistant PCa during androgen deprivation therapy, which reduces androgen production and inhibits androgen action in PCa cells. However, the mechanisms whereby aberrant AR-V expression is increased in PCa are still largely unknown. Fibroblasts in tumor stroma influence PCa initiation and aggressiveness, and which may play a crucial role in eliciting genetic changes during malignant transformation in human prostate epithelium. Here, our aim was to determine whether prostate fibroblasts in tumor stroma induce aberrant AR-V7 expression in PCa cells under low androgen concentration. METHODS We performed in vitro experiments using androgen-sensitive, AR-positive PCa cell lines (LNCaP and 22Rv1 cells), commercially available prostate stromal cells (PrSC), and primary cultured prostate fibroblasts (pcPrF) from PCa specimens collected from biopsies of patients with advanced PCa. PCa cells were cocultured with each of the three fibroblast lines (PrSC, pcPrF-M37, and pcPrF-M48). RESULTS The proliferation under low androgen concentration of LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 was significantly increased compared to that of PCa cells cultured alone. Androgen receptor-full length (AR-FL) protein expression was increased in LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. AR-V7 protein expression was increased in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. Under low androgen concentration, AR-V7 protein expression was slightly detected in LNCaP cells cocultured with PrSC or pcPrF-M37. Cytokine array analysis revealed that monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8) levels in the conditioned medium of 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 were increased under low androgen concentration. High IL-8 concentration (30 ng/ml) resulted in significantly increased protein expression of AR-FL, AR-V7, and phospho-NF-κB p65 in 22Rv1 cells. In contrast, IL-8 antibody (1 µg/ml) decreased AR-V7 protein expression in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. CONCLUSIONS pcPrF from PCa specimens increase the expression of aberrant AR-V7 in PCa cells. IL-8 may be a target for preventing the expression of aberrant AR-Vs in PCa.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yumi Yoshikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoru Masui
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kouhei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
7
|
Talukdar FR, Escobar Marcillo DI, Laskar RS, Novoloaca A, Cuenin C, Sbraccia P, Nisticò L, Guglielmi V, Gheit T, Tommasino M, Dogliotti E, Fortini P, Herceg Z. Bariatric surgery-induced weight loss and associated genome-wide DNA-methylation alterations in obese individuals. Clin Epigenetics 2022; 14:176. [PMID: 36528638 PMCID: PMC9759858 DOI: 10.1186/s13148-022-01401-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is a multifactorial and chronic condition of growing universal concern. It has recently been reported that bariatric surgery is a more successful treatment for severe obesity than other noninvasive interventions, resulting in rapid significant weight loss and associated chronic disease remission. The identification of distinct epigenetic patterns in patients who are obese or have metabolic imbalances has suggested a potential role for epigenetic alterations in causal or mediating pathways in the development of obesity-related pathologies. Specific changes in the epigenome (DNA methylome), associated with metabolic disorders, can be detected in the blood. We investigated whether such epigenetic changes are reversible after weight loss using genome-wide DNA methylome analysis of blood samples from individuals with severe obesity (mean BMI ~ 45) undergoing bariatric surgery. RESULTS Our analysis revealed 41 significant (Bonferroni p < 0.05) and 1169 (false discovery rate p < 0.05) suggestive differentially methylated positions (DMPs) associated with weight loss due to bariatric surgery. Among the 41 significant DMPs, 5 CpGs were replicated in an independent cohort of BMI-discordant monozygotic twins (the heavier twin underwent diet-induced weight loss). The effect sizes of these 5 CpGs were consistent across discovery and replication sets (p < 0.05). We also identified 192 differentially methylated regions (DMRs) among which SMAD6 and PFKFB3 genes were the top hypermethylated and hypomethylated regions, respectively. Pathway enrichment analysis of the DMR-associated genes showed that functional pathways related to immune function and type 1 diabetes were significant. Weight loss due to bariatric surgery also significantly decelerated epigenetic age 12 months after the intervention (mean = - 4.29; p = 0.02). CONCLUSIONS We identified weight loss-associated DNA-methylation alterations targeting immune and inflammatory gene pathways in blood samples from bariatric-surgery patients. The top hits were replicated in samples from an independent cohort of BMI-discordant monozygotic twins following a hypocaloric diet. Energy restriction and bariatric surgery thus share CpGs that may represent early indicators of response to the metabolic effects of weight loss. The analysis of bariatric surgery-associated DMRs suggests that epigenetic regulation of genes involved in endothelial and adipose tissue function is key in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - David Israel Escobar Marcillo
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ruhina Shirin Laskar
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Alexei Novoloaca
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Paolo Sbraccia
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenza Nisticò
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Valeria Guglielmi
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tarik Gheit
- Early Detection, Prevention, and Infections Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | | | - Eugenia Dogliotti
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Paola Fortini
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| |
Collapse
|
8
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK, Siddiqui JA. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol 2022; 86:497-512. [PMID: 35181473 PMCID: PMC9793433 DOI: 10.1016/j.semcancer.2022.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
Chemokines are recognized as the major contributor to various tumorigenesis, tumor heterogeneity, and failures of current cancer therapies. The tumor microenvironment (TME) is enriched with chemokines and cytokines and plays a pivotal role in cancer progression. Chronic inflammation is also considered an instructive process of cancer progression, where chemokines are spatiotemporally secreted by malignant cells and leukocyte subtypes that initiate cell trafficking into the TME. In various cancers, prostate cancer (PCa) is reported as one of the leading cancers in the worldwide male population. The chemokines-mediated signaling pathways are intensively involved in PCa progression and metastasis. Emerging evidence suggests that chemokines and cytokines are responsible for the pleiotropic actions in cancer, including the growth, angiogenesis, endothelial mesenchymal transition, leukocyte infiltration, and hormone escape for advanced PCa and therapy resistance. Chemokine's system and immune cells represent a promising target to suppress tumorigenic environments and serve as potential therapy/immunotherapy for the PCa. In this review, an attempt has been made to shed light on the alteration of chemokine and cytokine profiles during PCa progression and metastasis. We also discussed the recent findings of the diverse molecular signaling of these circulating chemokines and their corresponding receptors that could become future targets for therapeutic management of PCa.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA(1)
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
11
|
Alshaker H, Hunter E, Salter M, Ramadass A, Westra W, Winkler M, Green J, Akoulitchev A, Pchejetski D. Monocytes acquire prostate cancer specific chromatin conformations upon indirect co-culture with prostate cancer cells. Front Oncol 2022; 12:990842. [PMID: 36059613 PMCID: PMC9437316 DOI: 10.3389/fonc.2022.990842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Three-dimensional chromosome loop conformations are powerful regulators of gene expression. These chromosome conformations can be detected both in tumour and in circulating cells and have significant disease biomarker potential. We have recently detected specific chromosome conformations in circulating cells of patients with prostate cancer (PCa) which were similar to ones found in their primary tumours, however, the possibility of horizontal transfer of chromosome conformations was not studied previously. Methods Human monocytes (U937) were co-cultured in Boyden chambers through 0.4 uM membrane with or without PC-3 human PCa cells or their conditioned media and a custom DNA microarray for 900,000 chromosomal loops covering all coding loci and non-coding RNA genes was performed on each part of the co-culture system. Results We have detected 684 PC-3 cell-specific chromosome conformations across the whole genome that were absent in naïve monocytes but appeared in monocytes co-cultured with PC-3 cells or with PC-3-conditioned media. Comparing PC3-specific conformations to the ones we have previously detected in systemic circulation of high-risk PCa patients revealed 9 positive loops present in both settings. Conclusions Our results demonstrate for the first time a proof of concept for horizontal transfer of chromosome conformations without direct cell-cell contact. This carries high clinical relevance as we have previously observed chromatin conformations in circulating cells of patients with melanoma and PCa similar to ones in their primary tumours. These changes can be used as highly specific biomarkers for diagnosis and prognosis. Further studies are required to elucidate the specific mechanism of chromosome conformations transfer and its clinical significance in particular diseases.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Ewan Hunter
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | | | | | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jayne Green
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
- *Correspondence: Dmitri Pchejetski,
| |
Collapse
|
12
|
Zeitoun MM, Derar DR, Ali A, Alharbi YM. Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries. Animals (Basel) 2022; 12:ani12162125. [PMID: 36009715 PMCID: PMC9404956 DOI: 10.3390/ani12162125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heat stress imposes a high burden on domestic animals’ productive and reproductive performance. Due to the long hot summer, drought, and shortage of green fodders, camels raised in the desert suffer a lot of reproductive inefficiencies. This animal represents one of the main wealth sources for the desert inhabitants. Several fertility disorders have been discovered, leading to frequent breeding without pregnancy. This study aimed at exploring blood metabolites such as metabolic and reproductive hormones, cytokines, and antioxidants to be monitored as bio-indictors for subfertility in female camels. The results confirmed that none of the tested metabolic hormones and glucose revealed differences among fertile and subfertile females. However, FSH, inhibin, IL-ß, nitrous oxide, and glutathione revealed remarkable differences between fertile and subfertile females, which would be reliable tools to predict subfertility statuses in this animal. IL-ß revealed higher levels in the cases with genital inflammations. The normal profiles in control females revealed the highest FSH, and the lowest inhibin were vice versa in all subfertile females. Nonetheless, nitrous oxide and glutathione would also be reliable bio-indicators for judging the fertility status. Abstract The prevailing hot climate imposes heavy burdens on the productivity of the camel, goat, and sheep herds raised in the Gulf desert. Due to the lack of a reliable indicator for the various subfertility statuses in camel females, this study aimed to investigate the expression of inhibin, TGFά, ILß, FSH, sex and metabolic hormones, and antioxidants for the fertility status in camel females. Eighty-two subfertile and five fertile females were admitted to the university clinic with the complaint of repeat breeding with failed conception. The animal’s genital tracts were examined for reproductive soundness. Blood samples were withdrawn for hormonal, cytokines, and antioxidants determinations. Subfertile females were categorized into six groups; endometritis (EN, 28), inactive ovaries (IO, 20), ovarian hydrobursitis (BU, 19), vaginal adhesions (VA, 7), salpingitis (SA, 4), and cervicitis (CE, 4). Results revealed a significant increase in inhibin in all groups compared to control (68.2, 66.4, 61.8. 58.8, 58.3, 55.8, and 36 pg/mL, in CE, VA, IO, BU, EN, SA, and CON, respectively). TGFά, dehydroepiandrosterone (DHEA), and progesterone were not different among groups, whereas IL-ß differed among groups. FSH, estradiol, nitrous oxide, and glutathione were higher in CON compared with other groups. In conclusion, reproductive failures in camel females are reflected in the imbalances of endocrine, cytokines, and antioxidants bio-indicators.
Collapse
Affiliation(s)
- Moustafa M. Zeitoun
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
- Department of Animal and Fish Production, Faculty of Agriculture, El-Shatby, Alexandria University, Alexandria 21545, Egypt
- Correspondence: (M.M.Z.); (D.R.D.); (A.A.); (Y.M.A.)
| | - Derar R. Derar
- Department of Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.M.Z.); (D.R.D.); (A.A.); (Y.M.A.)
| | - Ahmed Ali
- Department of Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.M.Z.); (D.R.D.); (A.A.); (Y.M.A.)
| | - Yousef M. Alharbi
- Department of Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
- Correspondence: (M.M.Z.); (D.R.D.); (A.A.); (Y.M.A.)
| |
Collapse
|
13
|
Ben-Baruch A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front Immunol 2022; 13:903679. [PMID: 35663982 PMCID: PMC9157545 DOI: 10.3389/fimmu.2022.903679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Zhou ZW, Long HZ, Xu SG, Li FJ, Cheng Y, Luo HY, Gao LC. Therapeutic Effects of Natural Products on Cervical Cancer: Based on Inflammatory Pathways. Front Pharmacol 2022; 13:899208. [PMID: 35645817 PMCID: PMC9136176 DOI: 10.3389/fphar.2022.899208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Inflammation is a protective response of the body to an irritant. When an inflammatory response occurs, immune cells are recruited to the injury, eliminating the irritation. The excessive inflammatory response can cause harm to the organism. Inflammation has been found to contribute to cervical cancer if there is a problem with the regulation of inflammatory response. Cervical cancer is one of the most common malignant tumors globally, and the incidence tends to be younger. The harm of cervical cancer cannot be ignored. The standard treatments for cervical cancer include surgery, radiotherapy and chemotherapy. However, the prognosis for this treatment is poor, so it is urgent to find a safer and more effective treatment. Natural products are considered excellent candidates for the treatment of cervical cancer. In this review, we first describe the mechanisms by which inflammation induces cervical cancer. Subsequently, we highlight natural products that can treat cervical cancer through inflammatory pathways. We also introduce natural products for the treatment of cervical cancer in clinical trials. Finally, methods to improve the anticancer properties of natural products were added, and the development status of natural products was discussed.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Yan Cheng
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| |
Collapse
|
15
|
Esdaille AR, Ibilibor C, Holmes A, Palmer NR, Murphy AB. Access and Representation: A Narrative Review of the Disparities in Access to Clinical Trials and Precision Oncology in Black men with Prostate Cancer. Urology 2022; 163:90-98. [PMID: 34582887 DOI: 10.1016/j.urology.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To provide commentary on the disparities in access to clinical trials and precision oncology specific to Black men with Prostate Cancer (PCa) in the United States and lend a general framework to aid in closing these gaps. MATERIALS AND METHODS The ideas, commentaries and data presented in this narrative review were synthesized by utilizing qualitative and quantitative studies, reviews, and randomized control trials performed between 2010 and 2021. We searched PubMed using the key words "Medicaid", "Medicare", "clinical trials", "African Americans", "Black", "underrepresentation", "access", "Prostate Cancer", "minority recruitment", "racial disparities", "disparity", "genomics", "biomarkers", "diagnostic" "prognostic", "validation", "precision medicine", and "precision oncology" to identify important themes, trends and data described in the current review. Keywords were used alone and combination with both "AND" and "OR" terms. RESULTS Black men with prostate cancer (PCa) in the United States have earlier onset of disease, present with more advanced stages, and worse prostate cancer-specific survival than their White counterparts. Potential causative factors vary from disparities in health care access to differences in tumor immunobiology and genomics along with disparate screening rates, management patterns and underrepresentation in clinical and translational research such as clinical trials and precision oncology. CONCLUSION To avoid increasing the racial disparity in PCa outcomes for Black men, we must increase inclusion of Black men into precision oncology and clinical trials, using multilevel change. Underrepresentation in clinical and translational research may potentiate poorly validated risk calculators and biomarkers, leading to poor treatment decisions in high-risk populations. Relevant actions include funding to include minority-serving institutions as recruitment sites, and inclusion of evidence based recruitment methods in funded research to increase Black representation in clinical trials and translational research.
Collapse
Affiliation(s)
- Ashanda R Esdaille
- Department of Urology, University of Wisconsin at Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Christine Ibilibor
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Arturo Holmes
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Nynikka R Palmer
- Department of Medicine, Urology and Radiation Oncology, University of California San Francisco, San Francisco General Hospital, San Francisco, California
| | - Adam B Murphy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
16
|
Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022; 531:71-82. [PMID: 35122875 DOI: 10.1016/j.canlet.2022.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between various ancestral groups that may contribute to prostate cancer health disparities. These differences include enhanced androgen receptor signaling, increased genomic instability, metabolic dysregulation, and enhanced inflammatory and cytokine signaling. Immediate actions are needed to increase the establishment of adequate infrastructure and multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.
Collapse
|
17
|
Estrogen Receptor β Participates in Alternariol-Induced Oxidative Stress in Normal Prostate Epithelial Cells. Toxins (Basel) 2021; 13:toxins13110766. [PMID: 34822550 PMCID: PMC8621730 DOI: 10.3390/toxins13110766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Alternaria toxins are considered as emerging mycotoxins, however their toxicity has not been fully evaluated in humans. Alternariol (AOH), the most prevalent Alternaria mycotoxin, was previously reported to be genotoxic and to affect hormonal balance in cells; however, its direct molecular mechanism is not known. The imbalance in androgen/estrogen ratio as well as chronic inflammation are postulated as factors in prostate diseases. The environmental agents affecting the hormonal balance might participate in prostate carcinogenesis. Thus, this study evaluated the effect of two doses of AOH on prostate epithelial cells. We observed that AOH in a dose of 10 µM induces oxidative stress, DNA damage and cell cycle arrest and that this effect is partially mediated by estrogen receptor β (ERβ) whereas the lower tested dose of AOH (0.1 µM) induces only oxidative stress in cells. The modulation of nuclear erythroid-related factor 2 (Nrf2) was observed in response to the higher dose of AOH. The use of selective estrogen receptor β (ERβ) inhibitor PHTPP revealed that AOH-induced oxidative stress in both tested doses is partially dependent on activation of ERβ, but lack of its activation did not protect cells against AOH-induced ROS production or DNA-damaging effect in case of higher dose of AOH (10 µM). Taken together, this is the first study reporting that AOH might affect basic processes in normal prostate epithelial cells associated with benign and malignant changes in prostate tissue.
Collapse
|
18
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
19
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|