1
|
Muminov M, Tsiferova N, Pshenichnov E, Ermatova K, Charishnikova O, Abdullaev A, Levitskaya Y, Dalimova D, MVS S, Tomar G, Dewle A, Choudhari P, Wangikar A, Jadhav A, Mule M, Wangikar P, Abdurakhmonov I, Turdikulova S. Development, Pre-Clinical Safety, and Immune Profile of RENOVAC-A Dimer RBD-Based Anti-Coronavirus Subunit Vaccine. Vaccines (Basel) 2024; 12:1420. [PMID: 39772081 PMCID: PMC11680381 DOI: 10.3390/vaccines12121420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The development of effective and safe vaccines and their timely delivery to the public play a crucial role in preventing and managing infectious diseases. Many vaccines have been produced and distributed globally to prevent COVID-19 infection. However, establishing effective vaccine development platforms and evaluating their safety and immunogenicity remains critical to increasing health security, especially in developing countries. Objectives: Therefore, we developed a local subunit vaccine candidate, RENOVAC, and reported its toxicity and immunogenicity profile in animal models. Methods: First, the synthetic gene-coding tandem RBD linked with the GS linker was cloned into the expression vector and expressed in CHO cells. The protein was then purified and filter sterilized, and 10 µg/dose and 25 µg/dose formulations were finally examined for the 14-day repeated dose toxicity followed by the immunogenic profile in preclinical studies. Results: When administered to Sprague Dawley rats by intramuscular route, the vaccine was well tolerated up to and including the dose of 25 µg/animal, and no toxicologically adverse changes were noted. The observed change in weight of the thymus and spleen might be related to the immunological response to the vaccine. The dimer RBD vaccine demonstrated the ability to generate high levels of specific immunoglobulins (IGs) and neutralization antibodies (NAbs). Finally, changes in the amounts of specific T cells and cytokines after vaccination suggested that the vaccine mainly triggers an immune response by activating CD4+ Th2-cells, which then activate B-cells to provide humoral immunity. Conclusions: The study suggests that, based on its reliable immunogenicity and acceptable safety, the vaccine can be further directed for clinical trials.
Collapse
Affiliation(s)
| | - Nargiza Tsiferova
- Center for Advanced Technologies, Tashkent 100174, Uzbekistan
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | | | | | | | | | - Dilbar Dalimova
- Center for Advanced Technologies, Tashkent 100174, Uzbekistan
| | - Sandhya MVS
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Geetanjali Tomar
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ankush Dewle
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Pradhnya Choudhari
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Aditi Wangikar
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Amol Jadhav
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
- Institute of Applied Biological Research and Development, Pune 411007, India
| | - Mrunal Mule
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Pralhad Wangikar
- PRADO—Preclinical Research and Development Organization, Pvt. Ltd., Pune 410506, India
| | - Ibrokhim Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent 111215, Uzbekistan
| | | |
Collapse
|
2
|
Goyal DK, Keshav P, Kaur S. Adjuvant effects of TLR agonist gardiquimod admixed with Leishmania vaccine in mice model of visceral leishmaniasis. INFECTION GENETICS AND EVOLUTION 2021; 93:104947. [PMID: 34052416 DOI: 10.1016/j.meegid.2021.104947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
Tropical and subtropical areas of the world are affected by leishmaniasis, which is caused by Leishmania spp. It has been categorized as an NTD (neglected tropical disease) because of its negligence. The sand fly of genus Phlebotomus acts as the vector for the transmission of the promastigote form of this protozoan parasite to the mammalian host where it converts to amastigote form in the macrophages. Visceral form of leishmaniasis (VL) is a deadly infection in the endothelial system of the human and other mammals. Only a few chemotherapeutic agents are available for the treatment of this infectious disease whereas no vaccine is available for the control of leishmanial infection. Therefore in the current study, we have tested the effects of gardiquimod (a TLR agonist) as an adjuvant in combination with the formalin-killed antigen of L. donovani as a vaccine. The mice were vaccinated thrice at an interval of 2 weeks and challenged with L. donovani promastigotes after 2 weeks of the last vaccination. We assessed the parasite load, delayed-type hypersensitivity (DTH) responses, humoral and cell-mediated immune response in BALB/c mice before and after challenge infection with L. donovani. Immunized mice were found to have the least parasite load, high DTH response, elevated levels of Th1 cytokines, IgG2a, and nitric oxide than non-immunized and infected control mice. The efficacy of the vaccine was boosted with the use of adjuvant gardiquimod that depicts its potential as an adjuvant in this study. Our study is reporting the adjuvant effects of gardiquimod for the first time. Further studies using other Leishmania species can be performed to signify its role.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Goyal DK, Keshav P, Kaur S. Immune induction by adjuvanted Leishmania donovani vaccines against the visceral leishmaniasis in BALB/c mice. Immunobiology 2021; 226:152057. [PMID: 33545508 DOI: 10.1016/j.imbio.2021.152057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by Leishmania donovani or Leishmania infantum. Currently, the patients are treated with chemotherapeutic drugs; however, their toxicity limits their use. It would be desirable to develop a vaccine against this infection. In this study, we assessed the efficacy of different vaccine formulations at variable time points. Heat-killed (HK) antigen of Leishmania donovani was adjuvanted with two adjuvants (AddaVax and Montanide ISA 201) and three immunizations at a gap of 2 weeks (wk) were given to BALB/c mice. After 2 weeks of the last booster, mice were given challenge infection and sacrificed before challenge and after 4wk, 8wk, and 12 wk post-challenge. Significant protective immunity was observed in all the immunized animals and it was indicated by the notable rise in delayed-type hypersensitivity (DTH) response, remarkably declined parasite burden, a significant increase in the levels of interferon-gamma (IFN-γ), interleukin-12, interleukin-17 (Th1 cytokines), and IgG2a in contrast to infected control mice. Montanide ISA 201 with HK antigen provided maximum protection followed by AddaVax with HK and then HK alone. These findings elaborate on the importance of the tested adjuvants in the vaccine formulations against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
4
|
Goyal DK, Keshav P, Kaur S. Adjuvanted vaccines driven protection against visceral infection in BALB/c mice by Leishmania donovani. Microb Pathog 2021; 151:104733. [PMID: 33484811 DOI: 10.1016/j.micpath.2021.104733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Kinteoplastid protozoan parasite of genus Leishmania is the pathogen that causes leishmaniasis. Its prevalence is highest after malaria and visceral leishmaniasis is the most dreaded form of infection. No vaccine is available for the disease management and it relies wholly on a few chemotherapeutic agents which are toxic and besides drug resistance their costs are the limitations. Therefore, development of an effective vaccine is urgently required. In this study, Montanide ISA 201 and AddaVax were assessed for their adjuvant potential along with formalin-inactivated or killed vaccine for the immune induction. Immunological and parasitological studies were conducted to evaluate the efficacy of different vaccine formulations in BALB/c mice before challenge infection as well as 4, 8, and 12 weeks after challenge. The efficacy of vaccines was evidenced with reduced parasite burden, the higher DTH response, Th1 cytokines, and IgG2a isotype antibody in immunized mice. All the vaccines showed their potential against Leishmania donovani infection and vaccine formulated with Montanide ISA 201 exhibited maximum efficacy. Our results suggest the potential of these vaccine formulations in controlling Leishmania infection.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Zhao Y, Han Z, Zhang X, Zhang X, Sun J, Ma D, Liu S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020; 56:734-748. [PMID: 33009986 DOI: 10.1007/s11262-020-01799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/26/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox virus (FPV) is used as a vaccine vector to prevent diseases in poultry and mammals. The insertion site is considered as one of the main factors influencing foreign gene expression. Therefore, the identification of insertion sites that can stably and efficiently express foreign genes is crucial for the construction of recombinant vaccines. In this study, we found that the insertion of foreign genes into ORF054 and the ORF161/ORF162 intergenic region of the FPV genome did not affect replication, and that the foreign genes inserted into the intergenic region were more efficiently expressed than when they were inserted into a gene. Based on these results, the recombinant virus rFPVNX10-NDV F-E was constructed and immune protection against virulent FPV and Newcastle disease virus (NDV) was evaluated. Tests for anti-FPV antibodies in the vaccinated chickens were positive within 14 days post-vaccination. After challenge with FPV102, no clinical signs of FP were observed in vaccinated chickens, as compared to that in the control group (unvaccinated), which showed 100% morbidity. Low levels of NDV-specific neutralizing antibodies were detected in vaccinated chickens before challenge. After challenge with NDV ck/CH/LHLJ/01/06, all control chickens died within 4 days post-challenge, whereas 5/15 vaccinated chickens died between 4 and 12 days post-challenge. Vaccination provided an immune protection rate of 66.7%, whereas the control group showed 100% mortality. These results indicate that the ORF161/ORF162 intergenic region of FPVNX10 can be used as a recombination site for foreign gene expression in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xiaocai Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xuemei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
6
|
Lapuente D, Stab V, Storcksdieck Genannt Bonsmann M, Maaske A, Köster M, Xiao H, Ehrhardt C, Tenbusch M. Innate signalling molecules as genetic adjuvants do not alter the efficacy of a DNA-based influenza A vaccine. PLoS One 2020; 15:e0231138. [PMID: 32243477 PMCID: PMC7122823 DOI: 10.1371/journal.pone.0231138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/14/2020] [Indexed: 01/07/2023] Open
Abstract
In respect to the heterogeneity among influenza A virus strains and the shortcomings of current vaccination programs, there is a huge interest in the development of alternative vaccines that provide a broader and more long-lasting protection. Gene-based approaches are considered as promising candidates for such flu vaccines. In our study, innate signalling molecules from the RIG-I and the NALP3 pathways were evaluated as genetic adjuvants in intramuscular DNA immunizations. Plasmids encoding a constitutive active form of RIG-I (cRIG-I), IPS-1, IL-1β, or IL-18 were co-administered with plasmids encoding the hemagglutinin and nucleoprotein derived from H1N1/Puerto Rico/8/1934 via electroporation in BALB/c mice. Immunogenicity was analysed in detail and efficacy was demonstrated in homologous and heterologous influenza challenge experiments. Although the biological activities of the adjuvants have been confirmed by in vitro reporter assays, their single or combined inclusion in the vaccine did not result in superior vaccine efficacy. With the exception of significantly increased levels of antigen-specific IgG1 after the co-administration of IL-1β, there were only minor alterations concerning the immunogenicity. Since DNA electroporation alone induced substantial inflammation at the injection site, as demonstrated in this study using Mx2-Luc reporter mice, it might override the adjuvants´ contribution to the inflammatory microenvironment and thereby minimizes the influence on the immunogenicity. Taken together, the DNA immunization was protective against subsequent challenge infections but could not be further improved by the genetic adjuvants analysed in this study.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Andre Maaske
- Environmental Medicine, UNIKA-T Augsburg, Technische Universität München and Helmholtz Zentrum, Neuherberg, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Han Xiao
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, University Hospital Jena, Jena, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Yadav PK, Gupta SK, Kumar S, Ghosh M, Yadav BS, Kumar D, Kumar A, Saini M, Kataria M. IL-18 immunoadjuvanted xenogeneic canine MMP-7 DNA vaccine overcomes immune tolerance and supresses the growth of murine mammary tumor. Int Immunopharmacol 2020; 82:106370. [PMID: 32155464 DOI: 10.1016/j.intimp.2020.106370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
The development of the tumorigenesis and angiogenesis through proteolytic cleavage of extracellular matrix protein and basement membranes is promoted by Matrix metelloproteinases-7 (MMP-7). Consequently, MMP-7 is presumed as potential target for mammary cancer immunotherapy. However, MMP-7 is an endogenous tumor associated antigen (TAA); therefore, immunization is challenging. In current study, a potent anti-tumor immune response has been elicited through recombinant bivalent plasmid pVIVO2.IL18.cMMP7 which subside the highly metastatic 4 T1 cell line induced mammary tumors and efficiently negate the existing challenge of using MMP-7 as immunotherapeutic target. Balb/c mice were immunized with canine MMP-7 (cMMP-7) using interleukine-18 (IL-18), as an immunoadjuvant, to explore the potential of the combination regarding elicitation of a potent anti-tumor immune response. Mice vaccinated with pVIVO2.IL18.cMMP7 DNA plasmid reduced the tumor growth significantly along with augmentation of the immune response to fight against tumor antigen as depicted by substantial enrichment of CD4+ and CD8+ population in splenocytes, infiltration of immune system cells in tumor tissue and enhanced survival time of mice. Further, splenocyte supernatant examination of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were remarkably up-regulated demonstrating the stimulation of cell-mediated immune response. Thus the current observations vividly portray that administration of xenogeneic MMP-7 DNA vaccine bypasses the tolerance barrier.
Collapse
Affiliation(s)
- Pavan Kumar Yadav
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India; Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, Uttar Pradesh, India.
| | - Shishir Kumar Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India; Laboratory Animal Facility, CSIR-CDRI, Lucknow 226031, Uttar Pradesh, India
| | - Saroj Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India; Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, Uttar Pradesh, India
| | - Mayukh Ghosh
- Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, Uttar Pradesh, India
| | - Brijesh Singh Yadav
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India; University of Information Science & Technology St. Paul the apostle Partizanska bb., 6000 Ohrid, The Former Yugolav Republic of Macedonia
| | - Dinesh Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India; College of Agriculture, Tikamgarh, Jawaharlal Nehru Krishi Vishwa Vidylaya, Jabalpur 482004, Madhya Pradesh, India
| | - Ajay Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Mohini Saini
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Meena Kataria
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhao J, Liu C, Zhang J, Huang X, Zhang G. Cytokine expression in chicken embryo fibroblasts in response to infection with virulent or lentogenic avian avulavirus 1 (AAvV-1). Microb Pathog 2019; 133:103556. [PMID: 31128172 DOI: 10.1016/j.micpath.2019.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
To investigate cytokine expression in chicken embryo fibroblast (CEF) cells, a virulent avian avulavirus 1 (AAvV-1) strain called SG10 that rapidly causes 100% mortality in its host, and a vaccine strain (La Sota) were characterized. Real-time quantitative PCR was performed on RNA samples from CEF cells, which were collected at 0, 24, 48 and 72 h post-infection. The dynamic expression patterns of ten cytokines (TNF-α, IFN-α, IFN-β, IL-1β, IL-2, IL-6, IL-10, IL-13, IL-15 and IL-18) were investigated. The results showed that infection with lentogenic La Sota induced significantly higher levels of the antiviral cytokines IFN-α and IFN-β, proinflammatory cytokines IL-2, IL-15 and IL-18, and the anti-inflammatory cytokine IL-10, than did infection with virulent SG10. Furthermore, the SG10 strain induced dramatically higher levels of the inflammatory cytokine IL-6 than those observed in cells infected with La Sota. However, the expression patterns of the other cytokines that were tested did not show any obvious trends or statistically significant differences between cells infected with the virulent and avirulent strains. These data show that infection with lentogenic La Sota induced more effective immune responses and anti-viral effects than did infection with virulent SG10 in CEFs. Our data provide distinct expression patterns of IFNs and proinflammatory and anti-inflammatory cytokines to AAvV-1 by virulence in CEF cells.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Changqing Liu
- Beijing Huadu Yukou Poultry Company Limited, Beijing, 101206, China
| | - Jiaojiao Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuying Huang
- Beijing Huadu Yukou Poultry Company Limited, Beijing, 101206, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A, Jorjani O. Rhoptry antigens as Toxoplasma gondii vaccine target. Clin Exp Vaccine Res 2019; 8:4-26. [PMID: 30775347 PMCID: PMC6369123 DOI: 10.7774/cevr.2019.8.1.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 01/14/2023] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
Collapse
Affiliation(s)
- Masoud Foroutan
- Abadan School of Medical Sciences, Abadan, Iran.,Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Abdolhosein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ogholniaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Yadav BS, Chaturvedi N, Yadav PK, Marina N, Ganash M, Barreto GE, Ashraf GM, Ahmad K, Baig MH. Protein modeling, molecular network and molecular dynamics study of newly sequenced interleukin-18 (IL-18) gene in Mus musculus. J Cell Physiol 2019; 234:14285-14295. [PMID: 30624775 DOI: 10.1002/jcp.28127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
Abstract
Interleukin-18 (IL-18) belongs to the superfamily of IL-1 protein and exerts a pleiotropic pro-inflammatory effect on the body. Generally, this protein is significantly involved in immune defense during infection in cells, but sometimes its anomalous activities produce some inflammatory diseases like rheumatoid arthritis and Crohn's disease. In the present study, the IL-18 gene was isolated from mice and was subsequently cloned and sequenced. Further, the network analysis was carried out to explore the functional role of IL-18 protein in animals. The 3D protein structure of the IL-18 protein was generated and docked with appropriate 3-([3-cholamidopropyl]dimethylammonio)-1-propanesulfonate (CPS) ligand. Later the complex structure of the protein was subjected to molecular dynamics simulation (MDS) for 50 ns to determine the effect of ligand on protein. The network analysis explored the correlation of IL-18 protein with others proteins and their involvement in the different significant pathway to defend the cell from various diseases. As confirmed by MDS, the CPS:IL-18 complex was found to be highly stable. Our results further indicated that CPS ligand has the potential to act as a drug molecule, in future, for counteracting IL-18 activity. To date, no structural details were available for animal IL-18. Hence, the finding of this study will be useful in broadening the horizon towards a better understanding of the functional and structural aspects of IL-18 in animals.
Collapse
Affiliation(s)
- Brijesh S Yadav
- Department of Bioengineering, University of Information Science and Technology, Republic of Macedonia
| | - Navaneet Chaturvedi
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pavan K Yadav
- Department of Veterinary Physiology & Biochemistry, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Republic of Macedonia
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
11
|
IL-1β as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol 2018; 11:1265-1278. [PMID: 29545648 DOI: 10.1038/s41385-018-0017-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023]
Abstract
A universal influenza vaccine must provide protection against antigenically divergent influenza viruses either through broadly neutralizing antibodies or cross-reactive T cells. Here, intranasal immunizations with recombinant adenoviral vectors (rAd) encoding hemagglutinin (HA) and nucleoprotein (NP) in combination with rAd-Interleukin-(IL)-1β or rAd-IL-18 were evaluated for their efficacy in BALB/c mice. Mucosal delivery of rAd-IL-1β enhanced HA-specific antibody responses including strain-specific neutralizing antibodies. Nevertheless, the beneficial effects on the local T cell responses were much more impressive reflected by increased numbers of CD103+CD69+ tissue-resident memory T cells (TRM). This increased immunogenicity translated into superior protection against infections with homologous and heterologous strains including H1N1, pH1N1, H3N2, and H7N7. Inhibition of the egress of circulating T cells out of the lymph nodes during the heterologous infection had no impact on the degree of protection underscoring the unique potential of TRM for the local containment of mucosal infections. The local co-expression of IL-1β and antigen lead to the activation of critical checkpoints in the formation of TRM including activation of epithelial cells, expression of chemokines and adhesion molecules, recruitment of lung-derived CD103+ DCs, and finally local TRM imprinting. Given the importance of TRM-mediated protection at mucosal barriers, this study has major implications for vaccine development.
Collapse
|
12
|
YADAV PAVANKUMAR, GUPTA SHISHIRKUMAR, KUMAR SAROJ, SAINI MOHINI, MISHRA SUMITRANJAN, NANDAKUMAR P, KATARIA MEENA. Characterization and in vitro expression studies of a potential xenogeneic DNA vaccine against canine mammary tumours. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v87i12.79829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Matrix metalloproteinases-7 (MMP-7) which is expressed in a wide variety of malignant cells has been seen tobe extensively up-regulated in mammary carcinomas. MMP-7 can promote cancer invasion and angiogenesis through proteolytic cleavage of extracellular matrix and basement membrane proteins. This property of MMP-7 makes it a promising target in the context of immunotherapy. Further, to enhance DNA-based immunization, a cytokine gene can be employed as an adjuvant. Interleukin-18 (IL-18) is a Th1-type cytokine that has been demonstrated as a potential biological adjuvant in murine tumour models. The present study was undertaken to clone murine MMP-7 (mMMP-7) and IL-18 genes in pVIVO2.mcs eukaryotic expression vector and to characterize their expression by immunofluorescence and Western blotting. This double gene construct now may be used as a potential xenogeneic DNA vaccine against canine tumour model.
Collapse
|
13
|
Cerkovnik P, Novaković BJ, Stegel V, Novaković S. Changes in expression of genes involved in antitumor immunity in mice vaccinated with tumor vaccine composed of irradiated syngeneic tumor cells and CpG oligodeoxynucleotides. Mol Immunol 2016; 79:1-13. [PMID: 27677155 DOI: 10.1016/j.molimm.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
In our previous studies, it has been demonstrated that in more than 80% of mice long-lasting antitumor immunity has been established following intraperitoneal (i.p.) vaccination with tumor vaccine composed of irradiated syngeneic tumor cells and CpG ODNs class C. The aim of this study was, therefore, to investigate molecular mechanisms through which this vaccine triggers the immunity and to define genes particularly involved in this process. Changes in gene expression were followed in mononuclear cells isolated from peritoneal lavages, spleens and bone marrow samples. The expression of 84 genes significant for T-cell and B-cell activation as well as genes engaged in activation of macrophages, NK cells and DCs was determined using the RT2- Profiler PCR array. It has been observed that this tumor vaccine induces the up-regulation of genes involved in activation, proliferation and survival of memory T-cells (Cd8a, Cd8b1, Prlr, Was, Cxcl12, Il12, Sftpd, Tnfrsf13c, Il15, Il18), and prevents the activation of genes involved in generation of Treg and induction of immune tolerance (Sit1, Sla2, Cd1d1, Pdcd1lg2, Pawr, Socs5, Il27, Il4). We may conclude based on results of gene expression analysis, that tumor vaccine fine-tunes the proportion of cytotoxic to regulatory lymphocytes having an important impact on the induction and maintenance of memory cells in bone marrow.
Collapse
Affiliation(s)
- Petra Cerkovnik
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | | | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Jia Y, Zang A, Jiao S, Chen S, Yan F. The interleukin-18 gene promoter -607 A/C polymorphism contributes to non-small-cell lung cancer risk in a Chinese population. Onco Targets Ther 2016; 9:1715-9. [PMID: 27051306 PMCID: PMC4807946 DOI: 10.2147/ott.s99581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to determine the relationship between interleukin-18 (IL-18) -607 A/C polymorphism and the risk of non-small-cell lung cancer (NSCLC) and its impact on the serum IL-18 level. The genotyping of IL-18 -607 A/C polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the AA/AC genotype distribution in NSCLC patients was significantly higher than that of healthy controls (P=0.02). However, no significant differences were found between the two subgroups when stratified by clinical characteristics. Furthermore, serum IL-18 levels were found to be significantly higher in the NSCLC patients than in the controls (P=0.01) as detected by enzyme-linked immunosorbent assay analysis. There was no correlation between serum IL-18 levels and different genotypes. In conclusion, these findings suggest that IL-18 -607 A/C polymorphism increases the risk of NSCLC in the Chinese population, and this polymorphism could not functionally affect the IL-18 levels.
Collapse
Affiliation(s)
- Youchao Jia
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China; Department of Oncology, Affiliated Hospital of Hebei University, Hebei, People's Republic of China
| | - Aimin Zang
- Department of Oncology, Affiliated Hospital of Hebei University, Hebei, People's Republic of China
| | - Shunchang Jiao
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| | - Sumei Chen
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| | - Fu Yan
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| |
Collapse
|
15
|
Xu G, Guo Y, Seng Z, Cui G, Qu J. Bone marrow-derived mesenchymal stem cells co-expressing interleukin-18 and interferon-β exhibit potent antitumor effect against intracranial glioma in rats. Oncol Rep 2015; 34:1915-22. [PMID: 26252165 DOI: 10.3892/or.2015.4174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/07/2015] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising gene vehicles for cancer gene therapy. In our previous study, we reported that BMSCs expressing interleukin (IL)-18 effectively inhibit the growth of glioma in rats. In the present study, we further detected the effect of BMSCs co-expressing IL-18 and interferon (IFN)-β, both of which are immunostimulatory cytokines. BMSCs were genetically engineered to express IL-18 and IFN-β by transfection of recombinant lentivirus-mediated gene transfer. Results showed that BMSCs co-expressing the two cytokines displayed more significant inhibition effect on glioma cell growth in vitro when compared with BMSCs solely expressing IL-18 or IFN-β. Treatment of BMSCs co-expressing IL-18 and IFN-β significantly prolonged the survival and inhibited tumor growth in a rat intracranial glioma model. Furthermore, these genetically engineered BMSCs remarkably promoted cell apoptosis, antitumor cytokine production and CD4+ and CD8+ T-cell infiltration in intracranial glioma tissues than BMSCs solely expressing IL-18 or IFN-β. Results of the present study suggested that IL-18 and IFN-β had a synergistic effect on glioma inhibition. Moreover, results provided evidence that delivery of IL-18 and IFN-β by BMSCs may be an excellent and promising approach to develop an effective treatment protocol for glioma therapy.
Collapse
Affiliation(s)
- Gang Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanwu Guo
- Department of Neurosurgery, The Affiliated Zhujiang Hospital, South Medical University, Guangzhou 510282, P.R. China
| | - Zhiyuan Seng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
16
|
Chen GL, Fu PF, Wang LQ, Li XS, Chen HY. Immune responses of piglets immunized by a recombinant plasmid containing porcine circovirus type 2 and porcine interleukin-18 genes. Viral Immunol 2015; 27:521-8. [PMID: 25268976 DOI: 10.1089/vim.2014.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, two recombinant plasmids containing the ORF2 gene of porcine circovirus type 2 (PCV2) with or without porcine interleukin-18 (IL-18) were constructed and evaluated for their ability to protect piglets against PCV2 challenge. Transient expression of the plasmids in PK-15 cells could be detected using Western blot. Piglets were given two intramuscular immunizations 3 weeks apart and were challenged with a virulent Wuzhi strain of PCV2 at 42 days after the initial immunization. All animals vaccinated with pBudCE4.1-ORF2 or with pBudCE4.1-ORF2/IL18 developed PCV2-specific antibody and T-lymphocyte proliferative responses. The levels of T-lymphocyte proliferation in piglets immunized with pBudCE4.1-ORF2/IL18 were significantly higher than in those immunized with pBudCE4.1-ORF2, and pBudCE4.1-ORF2/IL18 stimulated a significantly increased production of IFN-γ and IL-2. Furthermore, PCV2 challenge experiments showed that the DNA vaccine-immunized groups can partially prevent PCV2 viremia and significantly reduce the amount of PCV2 virus in the lymphoid tissues, and the piglets immunized by pBudCE4.1-ORF2/IL18 exhibit a marked inhibition of PCV2 replication compared to the pBudCE4.1-ORF2 group. These data demonstrate that the plasmid pBudCE4.1-ORF2/IL18 may be an effective approach for increasing PCV2 DNA vaccine immunogenicity.
Collapse
Affiliation(s)
- Guang-Lei Chen
- 1 College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, Henan Province, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Huang CC, Kuo KK, Cheng TC, Chuang CH, Kao CH, Hsieh YC, Cheng KH, Wang JY, Cheng CM, Chen CS, Cheng TL. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine. PLoS One 2015; 10:e0133470. [PMID: 26186692 PMCID: PMC4506079 DOI: 10.1371/journal.pone.0133470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/25/2015] [Indexed: 12/30/2022] Open
Abstract
The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies.
Collapse
Affiliation(s)
- Chien-Chiao Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Kai Kuo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Han Kao
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Thakur A, Kaur H, Kaur S. Studies on the protective efficacy of freeze thawed promastigote antigen of Leishmania donovani along with various adjuvants against visceral leishmaniasis infection in mice. Immunobiology 2015; 220:1031-8. [PMID: 26001730 DOI: 10.1016/j.imbio.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani persists as a major public health issue in tropical and subtropical areas of the world. Current treatment of this disease relies on use of drugs. It is doubtful that chemotherapy can alone eradicate the disease, so there is a need for an effective vaccine. Killed antigen candidates remain a good prospect considering their ease of formulation, stability, low cost and safety. To enhance the efficacy of killed vaccines suitable adjuvant and delivery system are needed. Therefore, the current study was conducted to determine the protective efficacy of freeze-thawed L. donovani antigen in combination with different adjuvants against experimental infection of VL. For this, BALB/c mice were immunized thrice at an interval of two weeks. Challenge infection was given two weeks after last immunization. Mice were sacrificed after last immunization and on different post challenge/infection days. Immunized mice showed significant reduction in parasite burden, enhanced DTH responses with increased levels of Th1 cytokines and lower levels of Th2 cytokines, thus indicating the development of a protective Th1 response. Maximum protection was achieved with liposome encapsulated freeze thawed promastigote (FTP) antigen of L. donovani and it was followed by group immunized with FTP+MPL-A, FTP+saponin, FTP+alum and FTP antigen (alone). The present study highlights greater efficacy of freeze thawed promastigote antigen as a potential vaccine candidate along with effective adjuvant formulations against experimental VL infection.
Collapse
Affiliation(s)
- Ankita Thakur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
A eukaryotic expression plasmid carrying chicken interleukin-18 enhances the response to newcastle disease virus vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:56-64. [PMID: 25355794 DOI: 10.1128/cvi.00636-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-18 (IL-18) is an important cytokine involved in innate and acquired immunity. In this study, we cloned the full-length chicken IL-18 (ChIL-18) gene from specific-pathogen-free (SPF) chicken embryo spleen cells and provided evidence that the ChIL-18 gene in a recombinant plasmid was successfully expressed in chicken DT40 cells. ChIL-18 significantly enhanced gamma interferon (IFN-γ) mRNA expression in chicken splenocytes, which increased IFN-γ-induced nitric oxide (NO) synthesis by macrophages. The potential genetic adjuvant activity of the ChIL-18 plasmid was examined in chickens by coinjecting ChIL-18 plasmid and inactivated Newcastle disease virus (NDV) vaccine. ChIL-18 markedly elevated serum hemagglutination inhibition (HI) titers and anti-hemagglutinin-neuraminidase (anti-HN)-specific antibody levels, induced the secretion of both Th1- (IFN-γ) and Th2- (interleukin-4) type cytokines, promoted the proliferation of T and B lymphocytes, and increased the populations of CD3(+) T cells and their subsets, CD3(+) CD4(+) and CD3(+) CD8(+) T cells. Furthermore, a virus challenge revealed that ChIL-18 contributed to protection against Newcastle disease virus challenge. Taken together, our data indicate that the coadministration of ChIL-18 plasmid and NDV vaccine induces a strong immune response at both the humoral and cellular levels and that ChIL-18 is a novel immunoadjuvant suitable for NDV vaccination.
Collapse
|
20
|
Thakur A, Kaur H, Kaur S. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitol Int 2014; 64:70-8. [PMID: 25316605 DOI: 10.1016/j.parint.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Abstract
Despite a large number of field trials, till date no prophylactic antileishmanial vaccine exists for human use. Killed antigen formulations offer the advantage of being safe but they have limited immunogenicity. Recent research has documented that efforts to develop effective Leishmania vaccine have been limited due to the lack of an appropriate adjuvant. Addition of adjuvants to vaccines boosts and directs the immunogenicity of antigens. So, the present study was done to evaluate the effectiveness of four adjuvants i.e. alum, saponin, cationic liposomes and monophosphoryl lipid-A in combination with Autoclaved Leishmania donovani (ALD) antigen against murine visceral leishmaniasis (VL). BALB/c mice were immunized thrice with respective vaccine formulation. Two weeks after last booster, challenge infection was given. Mice were sacrificed 15 days after last immunization and on 30, 60 and 90 post infection/challenge days. A considerable protective efficacy was shown by all vaccine formulations. It was evident from significant reduction in parasite load, profound delayed type hypersensitivity responses (DTH), increased IgG2a titres and high levels of Th1 cytokines (IFN-γ, IL-12) as compared to the infected controls. However, level of protection varied with the type of adjuvant used. Maximum protection was achieved with the use of liposome encapsulated ALD antigen and it was closely followed by group immunized with ALD+MPL-A. Significant results were also obtained with ALD+saponin, ALD+alum and ALD antigen (alone) but the protective efficacy was reduced as compared to other immunized groups. The present study reveals greater efficacy of two vaccine formulations i.e. ALD+liposome and ALD+MPL-A against murine VL.
Collapse
Affiliation(s)
- Ankita Thakur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
21
|
Abstract
Cytokine-based immunotherapy is executed by harnessing cytokines to activate the immune system to suppress tumors. Th1-type cytokines including IL-1, IL-2, IL-12 and granulocyte-macrophage colony-stimulating factor are potent stimulators of Th1 differentiation and Th1-based antitumor response. Many preclinical studies demonstrated the antitumor effects of Th1 cytokines but their clinical efficacy is limited. Multiple factors influence the efficacy of immunotherapy for tumors. For instance immunosuppressive cells in the tumor microenvironment can produce inhibitory cytokines which suppress antitumor immune response. Most studies on cytokine immunotherapy focused on how to boost Th1 response; many studies combined cytokine-based therapy with other treatments to reverse immunosuppression in tumor microenvironment. In addition, cytokines have pleiotropic functions and some cytokines show paradoxical activities under different settings. Better understanding the physiological and pathological functions of cytokines helps clinicians to design Th1-based cancer therapy in clinical practice.
Collapse
Affiliation(s)
- Hong-Mei Xu
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
22
|
Bodles-Brakhop AM, Draghia-Akli R. DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 2014; 7:1085-101. [DOI: 10.1586/14760584.7.7.1085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Yang J, Chen L, Xu B, Xu J, Sun J, Shen W, Zhang T. Intracellular distributing and interferon-γ secretion of human interleukin-18 in BxPC-3 cells. Int J Med Sci 2014; 11:172-9. [PMID: 24465163 PMCID: PMC3894402 DOI: 10.7150/ijms.6875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/11/2013] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the characteristics of interleukin-18 (IL-18) in vitro, explore IL-18, interferon-γ (IFN-γ) and interleukin-2 (IL-2) secretive activity in BxPC-3 line cells with interleukin-18 mutants. METHODS Human IL-18 full-length gene (hIL-18-F) and the hIL-18 presumed mature protein gene (hIL-18-M) were inserted into the expression vector pEGFP-N1, to construct recombinant plasmids as Mu0, Mu1, Mu2, Mu3, and Mu4, and the recombinant plasmids were then transferred into BxPC-3 line cells. There are significant differences between Mu1, Mu2 and the pEGFP-C1 control group (P<0.05) by 3-(4,5-dimethiazol- 2-yl)- 2,5-diphenyltetrazolium bromide (MTT) for a proliferation assay, and the fluorescence of the Mu1 and Mu 2 appeared targeted to the membranous region in the BxPC-3 cells after transfected 24h by confocal laser scanning microscope (OLSM).To characterize the intracellular distribution of hIL-18, recombinant IL-18 were each fused to the enhanced green fluorescent protein gene, and expressed in BxPC-3 cells. RESULTS Results showed that the Mu1 tended to the membranous region in BxPC-3 cells, this indicates that the N-terminal former amino acid peptide helped ChIL-18 target to BxPC-3 cellS membranes. ELISA results demonstrated that IFN-γ and IL-18 secreted levels of BxPC-3 cells transfecting with recombinant plasmid showed an significant difference (P<0.01); refers to IL-2 expression, the two BxPC-3 cells groups transfecting with recombinant plasmid have no significant function (P>0.05). CONCLUSIONS The results showed that hIL-18 and hIL-18 presumed mature protein can induce the secretion of IFN-γ in BxPC-3 cells, and increase the expression of IL-18, but they have no effects on IL-2.
Collapse
Affiliation(s)
- Jin Yang
- 1. Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Linlin Chen
- 1. Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bin Xu
- 1. Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jian Xu
- 2. Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinquan Sun
- 2. Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wen Shen
- 2. Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- 2. Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
24
|
Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18. Res Vet Sci 2013; 95:1224-34. [PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/05/2013] [Accepted: 07/13/2013] [Indexed: 11/21/2022]
Abstract
We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
Collapse
|
25
|
Liu JM, Liu JN, Wei MT, He YZ, Zhou Y, Song XB, Ying BW, Huang J. Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population. GENETICS AND MOLECULAR RESEARCH 2013; 12:820-9. [PMID: 23546966 DOI: 10.4238/2013.march.15.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interleukin-18 (IL-18) has been implicated in a wide variety of cellular functions that affect the biological response to tumors. However, there is insufficient evidence to prove that IL-18 gene variants are associated with risk of prostate cancer. We examined a possible association between two promoter polymorphisms, -137G/C (rs187238) and -607C/A (rs1946518), in the IL-18 gene and prostate cancer occurrence and prognosis in Han Chinese. We used a high-resolution melting method to genotype these two polymorphisms in 375 Chinese Han patients with prostate cancer and in 400 age-matched healthy controls. A hundred and eighty-one prostate cancer patients who had been receiving androgen deprivation therapy, including operational and medical castration, were enrolled to follow-up in this study. Carriers of the GG genotype of the -137G/ C polymorphism had a 2.165-times higher risk of prostate cancer progression than carriers of GC [95% confidence interval (CI) = 1.270-3.687]. Patients with the GG genotype at clinical stages III and IV also had significantly lower rates of progression-free survival (relative risk = 2.174, 95%CI = 1.211-3.906). However, we found no significant association of genotype or allele distributions of these two polymorphisms with occurrence of prostate cancer. We conclude that there is evidence that the IL-18 gene promoter polymorphism -137G/ C influences the prognosis of prostate cancer patients in androgen deprivation therapy, although neither of the two SNPs contributes to prostate cancer development.
Collapse
Affiliation(s)
- J M Liu
- Department of Urology Surgery, West China School of Medicine, West China Hospital, Sichuan University, Sichuan Province, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Protective efficacy of a Toxoplasma gondii rhoptry protein 13 plasmid DNA vaccine in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1916-20. [PMID: 23015648 DOI: 10.1128/cvi.00397-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite infecting humans and other warm-blooded animals, resulting in serious public health problems and economic losses worldwide. Rhoptries are involved in T. gondii invasion and host cell interaction and have been implicated as important virulence factors. In the present study, a DNA vaccine expressing rhoptry protein 13 (ROP13) of T. gondii inserted into eukaryotic expression vector pVAX I was constructed, and the immune protection it induced in Kunming mice was evaluated. Kunming mice were immunized intramuscularly with pVAX-ROP13 and/or with interleukin-18 (IL-18). Then, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged with the virulent T. gondii RH strain (type I) and the cyst-forming PRU strain (type II). The results showed that pVAX-ROP13 alone or with pVAX/IL-18 induced a high level of specific anti-T. gondii antibodies and specific lymphocyte proliferative responses. Coinjection of pVAX/IL-18 significantly increased the production of gamma interferon (IFN-γ), IL-2, IL-4, and IL-10. Further, challenge experiments showed that coimmunization of pVAX-ROP13 with pVAX/IL-18 significantly (P < 0.05) increased survival time (32.3 ± 2.7 days) compared with pVAX-ROP13 alone (24.9 ± 2.3 days). Immunized mice challenged with T. gondii cysts (strain PRU) had a significant reduction in the number of brain cysts, suggesting that ROP13 could trigger a strong humoral and cellular response against T. gondii cyst infection and that it is a potential vaccine candidate against toxoplasmosis, which provided the foundation for further development of effective vaccines against T. gondii.
Collapse
|
27
|
Lim KL, Jazayeri SD, Yeap SK, Alitheen NBM, Bejo MH, Ideris A, Omar AR. Co-administration of avian influenza virus H5 plasmid DNA with chicken IL-15 and IL-18 enhanced chickens immune responses. BMC Vet Res 2012; 8:132. [PMID: 22866758 PMCID: PMC3511295 DOI: 10.1186/1746-6148-8-132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine. Results The overall HI antibody titer in chickens immunized with pDis/H5 + pDis/IL-15 was higher compared to chickens immunized with pDis/H5 (p < 0.05). The findings revealed that the inoculation of the 14-day-old chickens exhibited a shorter time to achieve the highest HI titer in comparison to the inoculation of the 1-day-old chickens. The cellular immunity was assessed by the flow cytometry analysis to enumerate CD4+ and CD8 + T cells in the peripheral blood. The chickens inoculated with pDis/H5 + pDis/IL-15 demonstrated the highest increase in CD4+ T cells population relative to the control chickens. However, this study revealed that pDis/H5 + pDis/IL-15 was not significant (P > 0.05) in inducing CD8+ T cells. Meanwhile, with the exception of Trial 1, the flow cytometry results for Trial 2 demonstrated that the pDis/H5 + pDis/IL-18 inoculated group was able to trigger a higher increase in CD4+ T cells than the pDis/H5 group (P < 0.05). On the other hand, the pDis/H5 + pDis/IL-18 group was not significant (P > 0.05) in modulating CD8+ T cells population in both trials. The pDis/H5 + pDis/IL-15 inoculated group showed the highest IL-15 gene expression in both trials compared to other inoculated groups (P < 0.05). Similar results were obtained for the IL-18 expression where the pDis/H5 + pDis/IL-18 groups in both trials (Table 8) were significantly higher compared to the control group (P < 0.05). However, the expressions of other cytokines remained low or undetected by GeXP assay. Conclusions This study shows the diverse immunogenicity of pDis/H5 co-administered with chicken IL-15 and IL-18,with pDis/H5 + pDis/IL-15 being a better vaccine candidate compared to other groups.
Collapse
Affiliation(s)
- Kian-Lam Lim
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 2012; 56:85-92. [PMID: 22150716 DOI: 10.1111/j.1348-0421.2011.00409.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.
Collapse
Affiliation(s)
- Jiansen Chen
- Clinical Laboratory Department, Fujian Medical University Affiliated Union Hospital, Fuzhou 350001, Fujian, China
| | | | | | | |
Collapse
|
29
|
Chen HY, Cui P, Cui BA, Li HP, Jiao XQ, Zheng LL, Cheng G, Chao AJ. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing glycoprotein B of infectious laryngotracheitis virus and chicken IL-18. ACTA ACUST UNITED AC 2011; 63:289-95. [DOI: 10.1111/j.1574-695x.2011.00850.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hong-Ying Chen
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| | - Pei Cui
- Henan Center for Animal Disease Control & Prevention; Animal Husbandry Bureau of Henan Province; Zhengzhou; Henan Province; China
| | - Bao-An Cui
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| | - He-Ping Li
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| | - Xian-Qin Jiao
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| | - Lan-Lan Zheng
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| | - Guo Cheng
- Henan Center for Animal Disease Control & Prevention; Animal Husbandry Bureau of Henan Province; Zhengzhou; Henan Province; China
| | - An-Jun Chao
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou; Henan Province; China
| |
Collapse
|
30
|
Shukla NM, Lewis TC, Day TP, Mutz CA, Ukani R, Hamilton CD, Balakrishna R, David SA. Toward self-adjuvanting subunit vaccines: model peptide and protein antigens incorporating covalently bound toll-like receptor-7 agonistic imidazoquinolines. Bioorg Med Chem Lett 2011; 21:3232-6. [PMID: 21549593 PMCID: PMC3098923 DOI: 10.1016/j.bmcl.2011.04.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 01/17/2023]
Abstract
Toll-like receptor (TLR)-7 agonists show prominent Th1-biased immunostimulatory activities. A TLR7-active N(1)-(4-aminomethyl)benzyl substituted imidazoquinoline 1 served as a convenient precursor for the syntheses of isothiocyanate and maleimide derivatives for covalent attachment to free amine and thiol groups of peptides and proteins. 1 was also amenable to direct reductive amination with maltoheptaose without significant loss of activity. Covalent conjugation of the isothiocyanate derivative 2 to α-lactalbumin could be achieved under mild, non-denaturing conditions, in a controlled manner and with full preservation of antigenicity. The self-adjuvanting α-lactalbumin construct induced robust, high-affinity immunoglobulin titers in murine models. The premise of covalently decorating protein antigens with adjuvants offers the possibility of drastically reducing systemic exposure of the adjuvant, and yet eliciting strong, Th1-biased immune responses.
Collapse
Affiliation(s)
- Nikunj M Shukla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu W, Feng S, Dakhova O, Creighton CJ, Cai Y, Wang J, Li R, Frolov A, Ayala G, Ittmann M. FGFR-4 Arg³⁸⁸ enhances prostate cancer progression via extracellular signal-related kinase and serum response factor signaling. Clin Cancer Res 2011; 17:4355-66. [PMID: 21622724 DOI: 10.1158/1078-0432.ccr-10-2858] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Increased expression of FGFR-4 and its ligands have been linked to lethal prostate cancer (PCa). Furthermore, a germ line polymorphism in the FGFR-4 gene, resulting in arginine at codon 388 (Arg³⁸⁸) instead of glycine (Gly³⁸⁸), is associated with aggressive disease. The FGFR-4 Arg³⁸⁸ variant results in increased receptor stability, sustained receptor activation, and increased motility and invasion compared with Gly³⁸⁸. However, the impact of sustained signaling on cellular signal transduction pathways is unknown. EXPERIMENTAL DESIGN Expression microarray analysis of immortalized prostatic epithelial cells lines expressing FGFR-4 Arg³⁸⁸ or Gly³⁸⁸ was used to establish a gene signature associated with FGFR-4 Arg³⁸⁸ expression. Transient transfection of reporters and inhibitors was used to establish the pathways activated by FGFR-4 Arg³⁸⁸ expression. The impact of pathway knockdown in vitro and in an orthotopic model was assessed using inhibitors and/or short hairpin RNA (shRNA). RESULTS Expression of the FGFR-4 Arg³⁸⁸ protein leads to increased activity of the extracellular signal-related kinase (ERK) pathway, increased activity of serum response factor (SRF) and AP1, and transcription of multiple genes that are correlated with aggressive clinical behavior in PCa. Increased expression of SRF is associated with biochemical recurrence in men undergoing radical prostatectomy. Consistent with these observations, knockdown of FGFR-4 Arg³⁸⁸ in PCa cells decreases proliferation and invasion in vitro and primary tumor growth and metastasis in vivo. CONCLUSIONS These studies define a signal transduction pathway downstream of FGFR-4 Arg³⁸⁸ that acts via ERK and SRF to promote PCa progression.
Collapse
Affiliation(s)
- Wendong Yu
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen HY, Shang YH, Yao HX, Cui BA, Zhang HY, Wang ZX, Wang YD, Chao AJ, Duan TY. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing HA of H9N2 avain influenza virus and chicken IL-18. Antiviral Res 2011; 91:50-6. [PMID: 21549153 DOI: 10.1016/j.antiviral.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/22/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Control of the circulation of H9N2 avian influenza virus (AIV) is a major concern for both animal and public health, and H9N2 AIV poses a major threat to the chicken industry worldwide. Here, we developed a recombinant fowlpox virus (rFPV-HA) expressing the haemagglutinin (HA) gene of the A/CH/JY/1/05 (H9N2) influenza virus and a recombinant fowlpox virus (rFPV-HA/IL18) expressing the HA gene and chicken interleukin-18 (IL-18) gene. Recombinant plasmid pSY-HA/IL18 was constructed by cloning chicken IL-18 expression cassette into recombinant plasmid pSY-HA containing the HA gene. Two rFPVs were generated by transfecting two recombinant plasmids into the chicken embryo fibroblast cells pre-infected with S-FPV-017, and assessed for their immunological efficacy on one-day-old White Leghorn specific-pathogen-free chickens challenged with the A/CH/JY/1/05 (H9N2) strain. There was a significant difference in HI antibody levels (P<0.05) elicited by either rFPV-HA or rFPV-HA/IL18. The level of splenocyte proliferation response in the rFPV-HA/IL18-vaccinated group was significantly higher (P<0.05) than that in the rFPV-HA group. After challenge with 10(6.5)ELD(50) H9N2 AIV 43days after immunization, rFPVs vaccinated groups could prevent virus shedding and replication in multiple organs in response to H9N2 AIV infection, and rFPV-HA/IL18 vaccinated group had better inhibition of viruses than rFPV-HA vaccinated group. Our results show that the protective efficacy of the rFPV-HA vaccine could be enhanced significantly by simultaneous expression of IL-18.
Collapse
Affiliation(s)
- Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Choi IK, Lee JS, Zhang SN, Park J, Sonn CH, Lee KM, Yun CO. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther 2011; 18:898-909. [PMID: 21451575 PMCID: PMC3169807 DOI: 10.1038/gt.2011.37] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oncolytic adenovirus (Ad) is currently being advanced as a promising antitumor remedy as it selectively replicates in tumor cells and can transfer and amplify therapeutic genes. Interleukin (IL)-12 induces a potent antitumor effect by promoting natural killer (NK) cell and cytotoxic T cell activities. IL-18 also augments cytotoxicity of NK cells and proliferation of T cells. This effect further enhances the function of IL-12 in a synergistic manner. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral administration of oncolytic Ad co-expressing IL-12 and IL-18, RdB/IL-12/IL-18. Intratumoral administration of RdB/IL-12/IL-18 improved antitumor effects, as well as increased survival, in B16-F10 murine melanoma model. The ratio of T-helper type 1/2 cytokine as well as the levels of IL-12, IL-18, interferon-γ and granulocyte–macrophage colony-stimulating factor was markedly elevated in RdB/IL-12/IL-18-treated tumors. Mice injected with RdB/IL-12/IL-18 also showed enhanced cytotoxicity of tumor-specific immune cells. Consistent with these results, immense necrosis and infiltration of NK cells, as well as CD4+ and CD8+ T cells, were observed in RdB/IL-12/IL-18-treated tumor tissues. Importantly, tumors treated with RdB/IL-12/IL-18 showed an elevated number of T cells expressing IL-12Rβ2 or IL-18Rα. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-18 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.
Collapse
Affiliation(s)
- I-K Choi
- Graduate Program for Nanomedical Science, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen HY, Zhang HY, Li XS, Cui BA, Wang SJ, Geng JW, Li K. Interleukin-18-mediated enhancement of the protective effect of an infectious laryngotracheitis virus glycoprotein B plasmid DNA vaccine in chickens. J Med Microbiol 2011; 60:110-116. [DOI: 10.1099/jmm.0.024109-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immunogenicity of an infectious laryngotracheitis virus (ILTV) glycoprotein B (gB) plasmid DNA vaccine and the immunoregulatory activity of chicken interleukin-18 (IL-18) were investigated in a challenge model. Two recombinant plasmids, pcDNA3.1/gB (pgB) and pcDNA3.1/IL-18 (pIL-18), containing gB and IL-18 were constructed. Chickens were intramuscularly administered two immunizations 2 weeks apart, and challenged with the virulent CG strain of ILTV 2 weeks later. All animals vaccinated with pgB alone or with a combination of pgB plus pIL-18 developed a specific anti-ILTV ELISA antibody and splenocyte proliferation response. The ratios of CD4+ to CD8+ T lymphocytes in chickens immunized with pgB plus pIL-18 were significantly higher than in those immunized with pgB alone. Co-injection of pIL-18 significantly increased the production of gamma interferon and IL-2, indicating that IL-18 enhances the T helper 1-dominant immune response. Challenge experiments showed that the morbidity rate in the pgB group (25 %) was significantly higher than that in the pgB plus pIL-18 group (10 %). The mortality rates in the pgB and pgB plus pIL-18 groups were 10 and 0 %, respectively, and the corresponding protection rates were 60 and 80 %. These results indicate that IL-18 may be an effective adjuvant for an ILTV vaccine.
Collapse
Affiliation(s)
- Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Hong-Ying Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Bao-An Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Shu-Juan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Jing-Wei Geng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| | - Kun Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95, 450002 Zhengzhou, Henan, PR China
| |
Collapse
|
35
|
Chen HY, Yang MF, Cui BA, Cui P, Sheng M, Chen G, Wang SJ, Geng JW. Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing S1 glycoprotein of infectious bronchitis virus and chicken IL-18. Vaccine 2010; 28:8112-9. [PMID: 20951182 PMCID: PMC7115522 DOI: 10.1016/j.vaccine.2010.09.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 09/08/2010] [Accepted: 09/23/2010] [Indexed: 11/05/2022]
Abstract
Infectious bronchitis virus (IBV) poses a major threat to the chicken industry worldwide. In this study, we developed a recombinant fowlpox virus (rFPV) vaccine expressing the IBV S1 gene and chicken interleukin-18 gene (IL-18), rFPV-S1/IL18. Recombinant plasmid pSY-S1/IL18 was constructed by cloning chicken IL-18 into fowlpox virus transfer plasmid containing S1 gene and transfected into the chicken embryo fibroblasts cell pre-infected with S-FPV-017 to generate rFPV-S1/IL18. Expression of the recombinant proteins was confirmed by RT-PCR and IFA. We also constructed the recombinant fowlpox virus rFPV-S1 without IL-18. One-day-old chickens were vaccinated by wing-web puncture with the two rFPVs, and the induced humoral and cellular responses were evaluated. There was a significant difference in ELISA antibody levels (P < 0.05) elicited by either rFPV-S1 or rFPV-S1/IL18. The ratios of CD4+ to CD8+ in chickens immunized with rFPV-S1/IL18 were significantly higher (P < 0.05) than in those immunized with rFPV-S1. All chickens immunized with rFPV-S1/IL18 were completely protected (20/20) after challenge with the virulent IBV HN99 strain 43 days after immunization, while only 15 out of 20 of the chickens immunized with the rFPV-S1 were protected. Our results show that the protective efficacy of the rFPV-S1 vaccine could be enhanced significantly by simultaneous expression of IL-18.
Collapse
Affiliation(s)
- Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95#, 450002 Zhengzhou, Henan Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.
Collapse
Affiliation(s)
- Sheeba Alam
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | |
Collapse
|
37
|
Zhong Z, Wei X, Qi B, Xiao W, Yang L, Wei Y, Chen L. A novel liposomal vaccine improves humoral immunity and prevents tumor pulmonary metastasis in mice. Int J Pharm 2010; 399:156-62. [PMID: 20692327 DOI: 10.1016/j.ijpharm.2010.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/30/2010] [Indexed: 02/05/2023]
Abstract
Basic fibroblast growth factor (bFGF) is an important stimulator of angiogenesis involving in neovascularization progression. The aim of this study is to evaluate whether a liposomal vaccine (MLB) based on xenogeneic human bFGF plus monophosphoryl lipid A (MPLA) could effectively induce cross-reaction immunity in mice and increase antitumor activity. Sera of mice were analyzed and IgG antibody titer in MLB group was obviously higher than other groups including the mice immunized with liposomal bFGF vaccine, bFGF plus Freund's adjuvant, empty liposome and PBS. Furthermore, tumor metastasis was significantly inhibited in MLB group, compared with L and PBS group. The IFN-γ production of cultured splenocytes in vitro was evidently up-regulated meanwhile IL-4 production sustained in a low level, revealing that this vaccine stimulated Th1 immunity response preferentially. Taken together, these findings suggested that this novel bFGF vaccine could effectively induce humoral immunity through cross-reaction, mediate Th1 immune response preferentially and enhance antitumor activity in vivo.
Collapse
Affiliation(s)
- Zhenghua Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
38
|
The protective effect of a Toxoplasma gondii SAG1 plasmid DNA vaccine in mice is enhanced with IL-18. Res Vet Sci 2010; 89:93-7. [DOI: 10.1016/j.rvsc.2010.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 12/20/2009] [Accepted: 01/12/2010] [Indexed: 11/24/2022]
|
39
|
Chen HY, Zhao L, Wei ZY, Cui BA, Wang ZY, Li XS, Xia PA, Liu JP. Enhancement of the immunogenicity of an infectious laryngotracheitis virus DNA vaccine by a bicistronic plasmid encoding glycoprotein B and interleukin-18. Antiviral Res 2010; 87:235-41. [PMID: 20553764 DOI: 10.1016/j.antiviral.2010.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/03/2023]
Abstract
A DNA vaccine against infectious laryngotracheitis virus (ILTV) can induce specific humoral and cell-mediated immunity. However, compared to conventional vaccines, DNA vaccines usually induce poor antibody responses. To determine if co-expression of a cytokine can result in a more potent ILTV DNA vaccine, immunogenicity and protective efficacy of a monocistronic vector encoding the glycoprotein B (gB) of ILTV was compared to that of a bicistronic vector separately encoding the gB and chicken interleukin-18. Humoral and cellular responses induced by the DNA vaccines administered to the quadriceps muscle of chickens were evaluated. There were significant differences in antibody levels elicited by either monocistronic or bicistronic DNA vaccines as determined by ELISA. The percentages of CD3(+), CD3(+)CD8(+) and CD3(+)CD4(+) subgroups of peripheral blood T-lymphocytes in chickens immunized with the bicistronic DNA vaccine were higher than those in chickens immunized with monocistronic DNA vaccine. When chickens were challenged with a virulent CG strain of ILTV, the protective efficacy was enhanced significantly after immunization with the bicistronic DNA vaccine. These results demonstrated that co-expression of an adjuvant cytokine from a bicistronic DNA vaccine may be an effective approach to increasing ILTV DNA vaccine immunogenicity.
Collapse
Affiliation(s)
- Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Wenhua Road 95#, 450002 Zhengzhou, Henan Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Adjuvant effects of chicken interleukin-18 in avian Newcastle disease vaccine. Vaccine 2010; 28:1148-55. [DOI: 10.1016/j.vaccine.2009.11.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/21/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022]
|
41
|
IL-18 Paradox in Pancreatic Carcinoma: Elevated Serum Levels of Free IL-18 are Correlated With Poor Survival. J Immunother 2009; 32:920-31. [DOI: 10.1097/cji.0b013e3181b29168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009; 27:1787-96. [PMID: 19208455 DOI: 10.1016/j.vaccine.2009.01.091] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/18/2009] [Accepted: 01/19/2009] [Indexed: 12/24/2022]
Abstract
Saponins are natural glycosides of steroid or triterpene which exhibited many different biological and pharmacological activities. Notably, saponins can also activate the mammalian immune system, which have led to significant interest in their potential as vaccine adjuvants. The most widely used saponin-based adjuvants are Quil A and its derivatives QS-21, isolated from the bark of Quillaja saponaria Molina, which have been evaluated in numerous clinical trials. Their unique capacity to stimulate both the Th1 immune response and the production of cytotoxic T-lymphocytes (CTLs) against exogenous antigens makes them ideal for use in subunit vaccines and vaccines directed against intracellular pathogens as well as for therapeutic cancer vaccines. However, Quillaja saponins have serious drawbacks such as high toxicity, undesirable haemolytic effect and instability in aqueous phase, which limits their use as adjuvant in vaccination. It has driven much research for saponin-based adjuvant from other kinds of natural products. This review will summarize the current advances concerning adjuvant effects of different kinds of saponins. The structure-activity relationship of saponin adjuvants will also be discussed in the light of recent findings. It is hoped that the information collated here will provide the reader with information regarding the adjuvant potential applications of saponins and stimulate further research into these compounds.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, PR China.
| | | | | |
Collapse
|
43
|
Carroll RG, Carpenito C, Shan X, Danet-Desnoyers G, Liu R, Jiang S, Albelda SM, Golovina T, Coukos G, Riley JL, Jonak ZL, June CH. Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells. PLoS One 2008; 3:e3289. [PMID: 18818761 PMCID: PMC2538560 DOI: 10.1371/journal.pone.0003289] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/27/2008] [Indexed: 01/12/2023] Open
Abstract
IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Rα was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies.
Collapse
Affiliation(s)
- Richard G Carroll
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vasir B, Wu Z, Crawford K, Rosenblatt J, Zarwan C, Bissonnette A, Kufe D, Avigan D. Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CpG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:808-21. [PMID: 18566447 DOI: 10.4049/jimmunol.181.1.808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.
Collapse
Affiliation(s)
- Baldev Vasir
- Dana-Farber Cancer Institute, Dana-Farber/Harvard Cancer Center, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wei F, Liu Q, Gao S, Shang L, Zhai Y, Men J, Jiang L, Zhu XQ, Fu Z, Shi Y, Xia Z, Lin J. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26kDa GST plasmid DNA vaccine in mice. Vaccine 2008; 26:4145-9. [PMID: 18562051 DOI: 10.1016/j.vaccine.2008.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 01/10/2023]
Abstract
Two recombinant plasmids pVAX/Sj26GST and pVAX/mIL-18 containing Schistosoma japonicum 26kDa GST and murine IL-18 were evaluated for their ability to protect mice against S. japonicum challenge. Mice were given 2 intramuscular immunizations 3 weeks apart, and challenged with S. japonicum cercariae 4 weeks later. Adult worm and egg burdens were determined 48 days post-challenge. All animals vaccinated with pVAX/Sj26GST alone or with pVAX/mIL-18 developed specific anti-SWAP (soluble worm antigen preparation) ELISA antibody and splenocyte proliferation response. Co-injection of pVAX/mIL-18 significantly increased the production of IFN-gamma and IL-12, indicating that IL-18 enhances the Th1-dominant immune response. Challenge experiments showed that worms were reduced in the pVAX/Sj26GST group by 30.1% and by 49.4% in animals given pVAX/mIL-18 additionally. Corresponding hepatic and fecal egg reductions were 44.8% and 53.0%, and 50.6% and 56.6%, respectively. These results indicate that IL-18 may be an effective adjuvant for a schistosomiasis vaccine.
Collapse
Affiliation(s)
- Feng Wei
- Laboratory of Parasitology, Veterinary Institute, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jeon YH, Choi Y, Kim HJ, Kang JH, Kim CW, Jeong JM, Lee DS, Chung JK. In Vivo Bioluminescence Visualization of Antitumor Effects by Human MUC1 Vaccination. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, the use of a cancer deoxyribonucleic acid (DNA) vaccine encoding tumor-associated antigens has emerged as an immunotherapeutic strategy. In this study, we monitored tumor growth inhibition by pcDNA3-hMUC1 immunization in mice using optical imaging. To determine the anti-hMUC1-associated immune response generated by pcDNA3.1 or pcDNA3-hMUC1, we determined the concentration of interferon-γ (IFN-γ) protein and CD8+IFN-γ cell numbers among lymphocytes from the draining lymph nodes of mice immunized with pcDNA3.1 or pcDNA3-hMUC1. After subcutaneously injecting CT26/hMUC1-F luc into mice immunized with pcDNA3-hMUC1, we monitored in vivo tumor growth inhibition using an optical imaging method. The concentration of IFN-γ protein in pcDNA3-hMUC1 was higher than that of the pcDNA3.1 group (2.7 ⩽ 0.08 ng/mL and 1.6 ± 0.07 ng/mL, respectively, p < .001. The number of hMUC1-associated CD8+IFN-γ cells in pcDNA3-hMUC1-immunized animals was 30-fold higher than in the pcDNA3.1 group. Bioluminescent images showed tumor growth inhibition in pcDNA3-hMUC1 immunized animals up to 25 days after immunization. A good correlation ( r2 = .9076: pcDNA3/hMUC1 group; r2 = .7428: pcDNA3.1 group) was observed between bioluminescence signals and tumor weights in two mice in each group. We conclude that optical bioluminescent imaging offers a useful means of monitoring the antitumor effects of cancer DNA immunization in living animals.
Collapse
Affiliation(s)
- Yong Hyun Jeon
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Choi
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Joo Kim
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Hyun Kang
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chul Woo Kim
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Min Jeong
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Soo Lee
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - June-Key Chung
- From the Departments of Nuclear Medicine, Pathology, and Tumor Biology and Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Lian H, Jin N, Li X, Mi Z, Zhang J, Sun L, Li X, Zheng H, Li P. Induction of an effective anti-tumor immune response and tumor regression by combined administration of IL-18 and Apoptin. Cancer Immunol Immunother 2007; 56:181-92. [PMID: 16767432 PMCID: PMC11031098 DOI: 10.1007/s00262-006-0178-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Immunization strategies using plasmid DNA can potentially improve humoral and cellular immune responses that protect against cancer and infectious diseases. The chicken anemia virus-derived Apoptin protein exhibits remarkable specificity in its ability to induce apoptosis in tumor cells, but not in normal diploid cells. Interleukin-18 (IL-18) is a Th1-type cytokine that has demonstrated potential as a biological adjuvant in murine tumor models. In this study, we analyzed the anti-tumor potential and mechanism of action of simultaneous Apoptin and IL-18 gene transfer in C57BL/6 mice bearing Lewis lung carcinoma (LLC). Here we report that the growth of established tumors in mice immunized with pAPOPTIN in conjunction with pIL-18 was significantly inhibited compared with the growth of tumors in mice immunized with the empty vector (EV) or pAPOPTIN alone. Furthermore, the immunization of mice with pAPOPTIN in conjunction with pIL-18 elicited strong natural killer activity and LLC tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, T cells from lymph nodes of mice vaccinated with pIL-18 or pAPOPTIN + pIL-18 secreted high levels of the Th1 cytokine IL-2 and IFN-gamma, indicating that the regression of tumor cells is related to a Th1-type dominant immune response. These results demonstrate that vaccination with Apoptin together with IL-18 may be a novel and powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hai Lian
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
- Department of Agriculture, College of Animal Husbandry and Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Ningyi Jin
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Xiao Li
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Zhiqiang Mi
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Jingmin Zhang
- School of Pharmacy, Jilin University, Changchun, People’s Republic of China
| | - Lili Sun
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Xuemei Li
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Hongling Zheng
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| | - Ping Li
- Genetic Engineering Laboratory, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun, Jilin 130062 People’s Republic of China
| |
Collapse
|
48
|
Abstract
Prostate cancer is a major cause of mortality in men in the Western world. Although treatment of early stage prostate cancer with radiation therapy or prostatectomy is efficient in most cases, some patients develop a fatal hormone-refractory disease. Treatments in this case are limited to aggressive chemotherapies, which can reduce serum prostate-specific antigen (PSA) levels in some patients. Taxane- and platinum-compound-based chemotherapies produce a survival benefit of only a few months. Therefore, it is crucial to develop novel, well tolerated treatment strategies. Over the past years, immunotherapy of hormone-refractory prostate cancer has been studied in numerous clinical trials. The fact that the prostate is a non-essential organ makes prostate cancer an excellent target for immunotherapy. Administration of antibodies targeting the human epidermal growth factor receptor-2 or the prostate-specific membrane antigen led to stabilisation of PSA levels in several patients. Vaccination of prostate cancer patients with irradiated allogeneic prostate cell lines has demonstrated that whole cell-based vaccines can significantly attenuate increases in PSA. Two different recombinant viral expression vectors have been applied in prostate cancer treatment: poxvirus and adenovirus vectors. Both vaccines have the advantages of using a natural method to induce immune responses and achieving high levels of transgene expression. Vaccinia viruses in combination with recombinant fowlpox or canarypox virus have been used to express recombinant PSA. Several studies demonstrated that this approach is safe and can lead to stabilisation of PSA values. A very promising approach in prostate cancer immunotherapy is vaccination of patients with dendritic cells. Thereby, peptides, recombinant proteins, tumour lysates or messenger RNA have been used to deliver antigens to autologous dendritic cells. Loading of dendritic cells with up to five different peptides derived from multiple proteins expressed in prostate cancer demonstrated that cytotoxic T-cell responses could be elicited in prostate cancer patients. Sipuleucel-T (APC8015), an immunotherapy product consisting of antigen-presenting cells, loaded ex vivo with a recombinant fusion protein consisting of prostatic acid phosphatase linked to granulocyte-macrophage colony-stimulating factor, demonstrated in a phase III, placebo-controlled trial an improvement in median time to disease progression. The improvement in overall survival was 4.5 months for sipuleucel-T-treated patients compared with the placebo group. Although there is a minor increase in overall survival of metastatic prostate cancer patients with some approaches, more effective therapeutic strategies need to be developed.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Constance, Konstanz, Germany.
| | | |
Collapse
|
49
|
Yoon HA, Eo SK. Differential polarization of immune responses by genetic cotransfer of chemokines changes the protective immunity of DNA vaccine against pseudorabies virus. Immunology 2006; 120:182-91. [PMID: 17116174 PMCID: PMC2265860 DOI: 10.1111/j.1365-2567.2006.02490.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemokines play a key role in eliciting adaptive immune responses by selectively attracting the innate cellular components to the site of antigen presentation. To evaluate the effect of the genetic adjuvant of chemokines on the adaptive immune responses induced by a plasmid DNA vaccine expressing glycorotein B (gB) of the pseudorabies virus (PrV), a PrV DNA vaccine was co-inoculated with plasmid DNA expressing certain chemokines including CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL5 (RANTES), CXCL8 (MIP-2), and CXCL10 (IP-10). A co-injection of the CCL3 plasmid DNA induced immunity that was biased to the T helper type 2 (Th2) pattern, as judged by the ratio of immunoglobulin G isotypes and the production of interleukin-4 cytokine generated from stimulated immune T cells. However, CCL5 and CXCL10 induced immune responses of the Th1-type, which rendered the recipients more resistant to a virulent virus infection. CXCL8 also showed enhanced humoral and cell-mediated immunity (mixed-type pattern) providing effective protection against a viral challenge. However, there was no change in the immune responses induced by the PrV DNA vaccine in CCL4 recipients. These results suggest that co-injection of a chemokine, in the form of an adjuvant preparation, causes a rebalancing of the immunity, which subsequently affects the protective efficacy against a virulent virus infection.
Collapse
Affiliation(s)
- Hyun A Yoon
- Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, Korea
| | | |
Collapse
|
50
|
Abstract
Significant progress made in the field of tumor immunology by the characterization of a large number of tumor antigens, and the better understanding of the mechanisms preventing immune responses to malignancies has led to the extensive study of cancer immunization approaches such as DNA vaccines encoding tumor antigens. This article reviews major aspects of DNA immunization in cancer. It gives a brief history and then discusses the proposed mechanism of action, preclinical and clinical studies, and methods of enhancing the immune responses induced by DNA vaccines.
Collapse
Affiliation(s)
- Rodica Stan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|