1
|
Mo X, Xiao Y, Qing KX, Zhang F, Yu H. Numerical study on the supersonic gas-solid two-phase injection mechanism of needle-free syringe. PLoS One 2025; 20:e0322571. [PMID: 40440337 PMCID: PMC12121760 DOI: 10.1371/journal.pone.0322571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/24/2025] [Indexed: 06/02/2025] Open
Abstract
Supersonic gas-solid injection technology finds extensive use in drug particle delivery systems. However, the combined impact of particle diameter and mass flow rate on the delivery efficiency remain insufficiently explored. Within the Euler-Lagrange framework, this study utilizes the discrete phase method (DPM) for the numerical simulation of supersonic gas-particle flow in a needle-free injector. After validating the model's accuracy with experiment results, further investigations were conducted into the influences of particle size and mass flow rate on particle behavior and flow field properties. The results indicate that the impact of larger particles on the compressible structure is stronger, while higher mass flow rate absorbs greater energy from the gas phase, reducing the gas expansion capacity, which results in lower velocity, Mach number, and higher temperature. The jet core zone is approximately x/X = 0.3 in length. Outside core zone, the gas velocity rapidly decays and temperature rises sharply. Within the jet core zone, drug particles are accelerated and cooled, while beyond core zone, they decelerate and heat up. The strongest inter-phase interactions occur primarily in the nozzle expansion area and the jet core zone. Smaller particles reach maximum velocity upstream. This implies that in designing needle-free injectors, the nozzle-to-skin distance must match the drug particle diameter to achieve maximum penetration effectiveness. Furthermore, the particle temperature decreases with smaller sizes. As the particle diameter rises from 10 μm to 100 μm, the minimum temperatures of the particles are 145 K and 264 K, respectively, indicating the need to match the particle diameter with the minimum temperature at which the drug particles remain effective. Additionally, higher mass flow rate doses reduce injection velocity and penetration ability, necessitating the rational control of the administered dose range. These results offer significant theoretical guidance for the design and improvement of needle-free injection.
Collapse
Affiliation(s)
- Xiao Mo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Xiao
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kai-Xiong Qing
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,
| | - Feng Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hongshi Yu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Protective Immunity against Vibrio harveyi in Grouper Induced by Single Vaccination with Poly (Lactide-co-glycolide) Microparticles Releasing Pleurocidin Peptide and Recombinant Glyceraldehyde-3-phosphate Dehydrogenase. Vaccines (Basel) 2020; 8:vaccines8010033. [PMID: 31963816 PMCID: PMC7157564 DOI: 10.3390/vaccines8010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
The peptide adjuvant, pleurocidin (PLE), and the Vibrio harveyi antigen, recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH) protein, were encapsulated with poly (lactide-co-glycolide) (PLG) polymers in our previous study to produce PLG-encapsulated PLE plus rGAPDH microparticles (PLG-PLE/rGAPDH MPs) that sustained stable release of both PLE and rGAPDH as well as, after two-time vaccination with MPs, generated long-term protective immunity against V. harveyi in grouper. Stable controlled-release of PLE plus rGAPDH from PLG-PLE/rGAPDH MPs is an attractive feature for developing an effective single-dose vaccine. In the present study, therefore, we aim to evaluate whether single administration with PLG-PLE/rGAPDH MPs in grouper would result in protective immunity against V. harveyi. Peritoneal vaccination of grouper with one dose of PLG-PLE/rGAPDH MPs raised serum titers over a long 12-week period. Moreover, twelve weeks after vaccination, significant lymphocyte proliferation and maximum TNF-α production were found in grouper immunized with a single dose of PLG-PLE/rGAPDH MPs. More importantly, immune responses elicited by single vaccination with PLG-PLE/rGAPDH MPs protected 80% of fish against a lethal peritoneal challenge of the highly virulent V. harveyi (Vh MML-1). In conclusion, our data truly reveal the feasibility of the development of a single-dose vaccine against V. harveyi based on PLG-PLE/rGAPDH MPs.
Collapse
|
3
|
Chuang SC, Chung YC, Yang CD. Protective immunity against toxoplasmosis in mice induced by single-dose immunization with rSAG1/2 protein released from poly(lactide-co-glycolide) microparticles. ACTA ACUST UNITED AC 2017; 24:5. [PMID: 28145222 PMCID: PMC5780786 DOI: 10.1051/parasite/2017004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/12/2017] [Indexed: 11/14/2022]
Abstract
Triphasic sustained release of tachyzoite chimeric protein, rSAG1/2, from poly(lactide-co-glycolide) (PLG)-encapsulated rSAG1/2 (PLG-rSAG1/2) microparticles (MPs) is a promising characteristic for developing a single-dose vaccine against Toxoplasma gondii in domestic animals. In the present study, we aimed to evaluate whether single immunization with PLG-rSAG1/2 MPs in BALB/c mice would achieve effective immunity and protection against T. gondii. Peritoneal immunization of mice with a single dose of PLG-rSAG1/2 MPs enhanced serum IgG titers and lymphocyte proliferation in a triphasic model over a long 12-week period. In addition, 12 weeks after immunization, significant production of IFN-γ was also monitored in mice vaccinated with one dose of PLG-rSAG1/2 MPs. More importantly, the immunity induced by one dose of PLG-rSAG1/2 MPs protected 70% of mice (14/20) against a lethal subcutaneous challenge of 1 × 104 live tachyzoites of T. gondii (RH strain). In conclusion, a single dose of PLG-rSAG1/2 MPs capable of sustaining triphasic release of rSAG1/2 protein induces long-lasting triphasic immunity against T. gondii in mice. Our data indicate the feasibility of PLG-rSAG1/2 MPs to be developed as a single-dose vaccine against T. gondii for potential use in domestic animals.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopaedic Research Center and Department of Physiology, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan
| |
Collapse
|
4
|
Chuang SC, Yang CDA. Sustained release of recombinant surface antigen 2 (rSAG2) from poly(lactide-co-glycolide) microparticles extends protective cell-mediated immunity against Toxoplasma gondii in mice. Parasitology 2014; 141:1657-1666. [PMID: 25036078 DOI: 10.1017/s0031182014000997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Current development efforts of subunit vaccines against Toxoplasma gondii, the aetiological agent of toxoplasmosis, have been focused mainly on tachyzoite surface antigens (SAGs) such as SAG2, due to their attachment roles in the process of host-cell invasion. In the present study, we aimed to produce poly(lactide-co-glycolide) (PLG) microparticles (MPs) containing recombinant SAG2 (rSAG2) to induce improved immunity against T. gondii. The resulting PLG-encapsulated rSAG2 (PLG-rSAG2) MPs, 2·14-3·63 μm in diameter, showed 74-80% entrapment efficiency and gradually released antigenic rSAG2 protein (88·3% of the total protein load) for a long 33-day period. Peritoneal immunization with PLG-rSAG2 MPs in BALB/c mice resulted in not only sustained (10 weeks) lymphocyte proliferation and IFN-γ production but also an improved protective capacity (87%) against a lethal subcutaneous challenge of 1×104 live tachyzoites of T. gondii (RH strain). In conclusion, the sustained release of rSAG2 protein from PLG-rSAG2 MPs extends Th1 cell-mediated immunity (lymphocyte proliferation and IFN-γ production) and induces improved protection against T. gondii tachyzoite infection in mice.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Department of Physiology, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Chung-DA Yang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan
| |
Collapse
|
5
|
Ali OA, Doherty E, Mooney DJ, Emerich D. Relationship of vaccine efficacy to the kinetics of DC and T-cell responses induced by PLG-based cancer vaccines. BIOMATTER 2014; 1:66-75. [PMID: 23507728 PMCID: PMC3548245 DOI: 10.4161/biom.1.1.16277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer vaccines are typically formulated for bolus injection and often produce short-lived immunostimulation resulting in poor temporal control over immune cell activation and weak oncolytic activity. One means of overcoming these limitations utilizes immunologically active biomaterial constructs. We previously reported that antigen-laden, macroporous PLG scaffolds induce potent dendritic cell (DC) and cytotoxic T-lymphocyte (CTL) responses via the controlled signaling of inflammatory cytokines, antigen and toll-like receptor agonists. In this study, we describe the kinetics of these responses and illustrate their fundamental relationship to potent tumor rejection when implanted subcutaneously in a mouse B16 model of melanoma. By explanting scaffolds from mice at times ranging from 1–7 d, a seamless relationship was observed between the production of controlled CTL responses, tumor growth and long-term survival in both prophylactic and therapeutic models. Scaffolds must be implanted for > 7 d to augment CTL responses via the prolonged presentation of tumor antigen, and the benefits included a notable regression of established tumors. Host DC infiltration into the porous material persisted for 12 days (peaking at day 5 ~1.4 x 106 cells), and a sharp attenuation in DC numbers coincided with peak CD8+ CTL infiltration at day 12 (~8 x 105 cells). Importantly, these PLG systems enhanced DC numbers in the draining lymph node, resulting in increased CD8(+) CTL subsets at days 10–16 of vaccination. These results indicate that material systems can finely control innate and adaptive immune cell responses to kill typically untreatable melanoma tumors and provide critical kinetic data for the design of vaccine carriers.
Collapse
Affiliation(s)
- Omar A Ali
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | |
Collapse
|
6
|
Encapsulation of chimeric protein rSAG1/2 into poly(lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Exp Parasitol 2013; 134:430-7. [PMID: 23624036 DOI: 10.1016/j.exppara.2013.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 03/07/2013] [Accepted: 04/08/2013] [Indexed: 11/20/2022]
Abstract
In the present study, the poly(lactide-co-glycolide) (PLG) polymer was used as an adjuvant to encapsulate the chimeric protein rSAG1/2 for preparing a microparticle vaccine against Toxoplasma gondii. The resulting PLG-encapsulated rSAG1/2 (PLG-rSAG1/2) microparticles, 1.27-1.65μm in diameter, showed 72-83% entrapment efficiency. The amount of released rSAG1/2 protein from microparticles gradually increased over a long 56-day period and the protein still retained its antigenicity. Intraperitoneal immunization with the microparticles in BALB/c mice elicited significant long-term (10weeks) humoral and cell-mediated immune responses, accompanied by secretion of a large amount of IFN-γ, to achieve strong protection (83%) against a lethal subcutaneous tachyzoite challenge. In conclusion, we have successfully encapsulated rSAG1/2 with the PLG polymer to produce stable microparticles that can effectively induce not only long-term immunity but also high protection against T. gondii. These crucial data would be advantageous for developing long-term Toxoplasma vaccines for future use in humans and animals.
Collapse
|
7
|
Michinaka Y, Mitragotri S. Delivery of polymeric particles into skin using needle-free liquid jet injectors. J Control Release 2011; 153:249-54. [DOI: 10.1016/j.jconrel.2011.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
8
|
Uchida M, Natsume H, Seki T, Uchida T, Morimoto Y. Relationships between the particle velocity and introduction of drug-loaded microparticles into the skin in a microparticulate bombardment system. Chem Pharm Bull (Tokyo) 2011; 59:662-5. [PMID: 21532207 DOI: 10.1248/cpb.59.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, it has been suggested that a microparticulate bombardment system would be a very useful tool for the delivery of a variety of powdered drugs as an alternative to parenteral injection via a needle. However the relationship between the particle dynamics and introduction into the skin has not been researched using this system. In the present study, we analyzed the velocity of microparticles bombarded by the Helios(TM) gun system under various conditions using particle image velocimetry (PIV). The particle kinetic energy, which depended on the particle velocity and particle mass, was increased with increasing helium pressure and particle size, decreasing bombardment dose, resulting in the increased percentage introduction and relative bioavailability (F(0-24 h)). The particle velocity had a greater influence than the particle mass. Therefore, in order to be the most effective system for introduction into the skin, it is necessary to use a high helium pressure and microparticles of high density. However, it is also necessary to consider the skin damage after bombardment.
Collapse
Affiliation(s)
- Masaki Uchida
- Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan.
| | | | | | | | | |
Collapse
|
9
|
Wang S, Zhang X, Wang W, Lee LJ. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Anal Chem 2009; 81:4414-21. [PMID: 19419195 PMCID: PMC2700304 DOI: 10.1021/ac9002672] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently developed a semicontinuous flow electroporation (SFE) device for in vitro DNA delivery. Cells mixed with plasmid DNA continuously flowed through a serpentine channel, the side walls of which also serving as electrodes. With the use of pWizGFP plasmid and K562 cells as a model system, SFE showed better transgene expression (10-15%) compared to a commercial electroporation system. Quantitative results via MTS assay also revealed a 50% or higher cell viability. Similar observations were also found with pWizGFP transfection to mouse embryonic stem cells. Such improvements were attributed to less gas formation and Joule heating in SFE.
Collapse
Affiliation(s)
- Shengnian Wang
- Institute for Micromanufacturing and Chemical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272
| | - Xulang Zhang
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| | - Weixiong Wang
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| | - L. James Lee
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| |
Collapse
|