1
|
Park J, Polizzi KM, Kim J, Kim J. Manipulating subcellular protein localization to enhance target protein accumulation in minicells. J Biol Eng 2025; 19:27. [PMID: 40158151 PMCID: PMC11955136 DOI: 10.1186/s13036-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles. RESULTS In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions. CONCLUSIONS These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
Collapse
Grants
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- EP/T005297/1, EP/W00979X/1 EPSRC Adventurous Manufacturing
Collapse
Affiliation(s)
- Junhyeon Park
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyun Kim
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Yan S, Gan Y, Xu H, Piao H. Bacterial carrier-mediated drug delivery systems: a promising strategy in cancer therapy. Front Bioeng Biotechnol 2025; 12:1526612. [PMID: 39845371 PMCID: PMC11750792 DOI: 10.3389/fbioe.2024.1526612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cancer is a major killer threatening modern human health and a leading cause of death worldwide. Due to the heterogeneity and complexity of cancer, traditional treatments have limited effectiveness. To address this problem, an increasing number of researchers and medical professionals are working to develop new ways to treat cancer. Bacteria have chemotaxis that can target and colonize tumor tissue, as well as activate anti-tumor immune responses, which makes them ideal for biomedical applications. With the rapid development of nanomedicine and synthetic biology technologies, bacteria are extensively used as carriers for drug delivery to treat tumors, which holds the promise of overcoming the limitations of conventional cancer treatment regimens. This paper summarizes examples of anti-cancer drugs delivered by bacterial carriers, and their strengths and weaknesses. Further, we emphasize the promise of bacterial carrier delivery systems in clinical translation.
Collapse
Affiliation(s)
- Sizuo Yan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Yu Gan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
- Central Laboratory, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
4
|
Sabbadini R. Making a difference. Eur J Transl Myol 2024; 34:12811. [PMID: 39105478 PMCID: PMC11487635 DOI: 10.4081/ejtm.2024.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
This is a personal account of one academic scientist who founded two biotechnology companies. Both companies were initially incubated within the walls of the university under a creative student incubator program whereby biology students could pursue their graduate academic degrees while gaining valuable biotechnology experiences. After the companies transitioned out of the university environment, the professor and his students pursued diagnostic and therapeutic drug development resulting in the completion of several clinical trials. The value of international scientific collaborations with colleagues at the University of Padova (Italy) is also described.
Collapse
Affiliation(s)
- Roger Sabbadini
- Department of Biology, San Diego State University, San Diego, California.
| |
Collapse
|
5
|
Grenier SF, Khan MW, Reil KA, Sawaged S, Tsuji S, Giacalone MJ, Tian M, McGuire KL. VAX014, an Oncolytic Therapy, Reduces Adenomas and Modifies Colon Microenvironment in Mouse Model of CRC. Int J Mol Sci 2023; 24:9993. [PMID: 37373142 DOI: 10.3390/ijms24129993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most common form of cancer and, despite its reduced mortality, results in over 50,000 deaths annually, highlighting the need for novel therapeutic approaches. VAX014 is a novel clinical-stage, oncolytic bacterial minicell-based therapy shown to elicit protective antitumor immune responses in cancer, but it has not been fully evaluated in CRC. Here, VAX014 was demonstrated to induce oncolysis in CRC cell lines in vitro and was evaluated in vivo, both as a prophylactic (before spontaneous development of adenomatous polyps) and as a neoadjuvant treatment using the Fabp-CreXApcfl468 preclinical animal model of colon cancer. As a prophylactic, VAX014 significantly reduced the size and number of adenomas without inducing long term changes in the gene expression of inflammatory, T helper 1 antitumor, and immunosuppression markers. In the presence of adenomas, a neoadjuvant VAX014 treatment reduced the number of tumors, induced the gene expression of antitumor TH1 immune markers in adenomas, and promoted the expansion of the probiotic bacterium Akkermansia muciniphila. The neoadjuvant VAX014 treatment was associated with decreased Ki67 proliferation in vivo, suggesting that VAX014 inhibits adenoma development through both oncolytic and immunotherapeutic effects. Combined, these data support the potential of VAX014 treatment in CRC and "at risk" polyp-bearing or early adenocarcinoma populations.
Collapse
Affiliation(s)
- Shea F Grenier
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mohammad W Khan
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Savannah Sawaged
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | - Mengxi Tian
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Kathleen L McGuire
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
8
|
Tsuji S, Reil K, Nelson K, Proclivo VH, McGuire KL, Giacalone MJ. Intravesical VAX014 Synergizes with PD-L1 Blockade to Enhance Local and Systemic Control of Bladder Cancer. Cancer Immunol Res 2022; 10:978-995. [PMID: 35679299 DOI: 10.1158/2326-6066.cir-21-0879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Emerging clinical evidence indicates that the combination of local administration of immunotherapy with systemic immune checkpoint blockade targeting the PD-1/PD-L1 pathway improves response rates in select solid tumor indications; however, limited clinical experience with this approach exists in advanced bladder cancer patients. VAX014 is a novel bacterial minicell-based, integrin-targeted oncolytic agent undergoing clinical investigation for intravesical (IVE) treatment of non-muscle invasive bladder cancer. Here, we demonstrated that the antitumor activity of VAX014 following IVE administration was dependent upon CD4+ and CD8+ T cells in two syngeneic orthotopic bladder tumor models (MB49 and MBT-2). PD-L1 upregulation was found to be an acquired immune-resistance mechanism in the MB49 model, and the combination of VAX014 with systemic PD-L1 blockade resulted in a significant improvement in bladder tumor clearance rates and development of protective antitumor immunologic memory. Combination treatment also led to enhanced systemic antitumor immune responses capable of clearing distal intradermal tumors and controlling pulmonary metastasis. Distal tumors actively responding to combination therapy demonstrated a phenotypic shift from Treg to Th1 in intratumoral CD4+ T cells, which was accompanied by a higher percentage of activated CD8+ T cells and higher IFNγ. Finally, VAX014's target integrins α3β1 and α5β1 were overexpressed in tumor biopsies from advanced stage bladder cancer patients, as well as in both the MB49 and MBT-2 orthotopic mouse models of bladder cancer. These collective findings provide rationale for clinical investigation of VAX014 and systemic PD-1/PD-L1 blockade in advanced stage bladder cancer.
Collapse
Affiliation(s)
- Shingo Tsuji
- Vaxiion Therapeutics (United States), San Diego, United States
| | - Katherine Reil
- Vaxiion Therapeutics and San Diego State University, San Diego, United States
| | - Kinsey Nelson
- Vaxiion Therapeutics and San Diego State University, San Diego, CA, United States
| | | | | | | |
Collapse
|
9
|
Jivrajani M, Nivsarkar M. Minicell-Based Targeted Delivery of shRNA to Cancer Cells: An Experimental Protocol. Methods Mol Biol 2019; 1974:111-139. [PMID: 31098999 DOI: 10.1007/978-1-4939-9220-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bacterial minicell has emerged as a novel targeted delivery system for RNAi-based therapeutics. In this chapter, we have described the detailed protocol for the preparation of minicell-based targeted delivery system for shRNA. Initially, minicell-producing parent bacterial cells were transformed with plasmid vector containing shRNA. Subsequently, shRNA-packaged minicells were purified from parent bacterial cells. Purified minicells were characterized by fluorescence microscopy and transmission electron microscopy. In the next step, targeting ligand was conjugated on the minicell surface for the active targeting of cancer cell surface receptors. Eventually, target-specific delivery of minicells was explored in vitro in selected cancer cell line and in vivo in mice bearing tumor xenograft.
Collapse
Affiliation(s)
- Mehul Jivrajani
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Faculty of Science, NIRMA University, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
| |
Collapse
|
10
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Preclinical evaluation of VAX-IP, a novel bacterial minicell-based biopharmaceutical for nonmuscle invasive bladder cancer. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16004. [PMID: 27119118 PMCID: PMC4824562 DOI: 10.1038/mto.2016.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The development of new therapies that can prevent recurrence and progression of nonmuscle invasive bladder cancer remains an unmet clinical need. The continued cost of monitoring and treatment of recurrent disease, along with its high prevalence and incidence rate, is a strain on healthcare economics worldwide. The current work describes the characterization and pharmacological evaluation of VAX-IP as a novel bacterial minicell-based biopharmaceutical agent undergoing development for the treatment of nonmuscle invasive bladder cancer and other oncology indications. VAX-IP minicells selectively target two oncology-associated integrin heterodimer subtypes to deliver a unique bacterial cytolysin protein toxin, perfringolysin O, specifically to cancer cells, rapidly killing integrin-expressing murine and human urothelial cell carcinoma cells with a unique tumorlytic mechanism. The in vivo pharmacological evaluation of VAX-IP minicells as a single agent administered intravesically in two clinically relevant variations of a syngeneic orthotopic model of superficial bladder cancer results in a significant survival advantage with 28.6% (P = 0.001) and 16.7% (P = 0.003) of animals surviving after early or late treatment initiation, respectively. The results of these preclinical studies warrant further nonclinical and eventual clinical investigation in underserved nonmuscle invasive bladder cancer patient populations where complete cures are achievable.
Collapse
|
12
|
Kaval KG, Rismondo J, Halbedel S. A function of DivIVA in Listeria monocytogenes division site selection. Mol Microbiol 2014; 94:637-54. [PMID: 25185533 DOI: 10.1111/mmi.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
The cell division protein DivIVA influences protein transport via the accessory SecA2 secretion route in Listeria monocytogenes. In contrast, DivIVA from the closely related bacterium Bacillus subtilis contributes to division site selection via the MinCDJ system. However, no classical min phenotype, i.e. filamentation and minicell production was observed with a listerial ΔdivIVA mutant. This has prompted the speculation that division site selection is DivIVA-independent in L. monocytogenes. We addressed this question with genetic, cytological and bacterial two-hybrid experiments and the data obtained correct this view. DivIVA not only binds to MinJ but also directly interacts with MinD. Experiments with fluorescently tagged proteins showed that localization of MinC and MinD was clearly DivIVA-dependent, whereas localization of MinJ was not. An impact of DivIVA on cell division was confirmed by careful comparisons of cell size distributions of divIVA and secA2 mutants. Gene deletion studies and epistasis experiments consistently reinforced these findings, and also revealed that MinJ must have a DivIVA-independent function. The frequency of minicell formation is low in L. monocytogenes min mutants. However, since listerial minicells might be useful as carriers for the introduction of therapeutic compounds into eukaryotic cells, we present a strategy how minicell frequency can be increased.
Collapse
Affiliation(s)
- Karan Gautam Kaval
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | | | | |
Collapse
|
13
|
A coupling process for improving purity of bacterial minicells by holin/lysin. J Microbiol Methods 2011; 86:108-10. [PMID: 21504766 DOI: 10.1016/j.mimet.2011.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/21/2022]
Abstract
Drug and gene delivery systems using bacterial minicells have attracted much attention. Here we attempted to enhance the yield and purity of the minicells using a novel method in which autolysin induced in actively metabolizing parent cells led to autolysis. A two-step protocol coupling an autolysin (holin/lysin) step with a conventional centrifugation step achieved a purity of the minicells similar to that resulting from successive six- or seven-step methods.
Collapse
|
14
|
A highly optimized DNA vaccine confers complete protective immunity against high-dose lethal lymphocytic choriomeningitis virus challenge. Vaccine 2011; 29:6755-62. [PMID: 21238574 DOI: 10.1016/j.vaccine.2010.12.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protection against infection is the hallmark of immunity and the basis of effective vaccination. For a variety of reasons there is a great demand to develop new, safer and more effective vaccine platforms. In this regard, while 'first-generation' DNA vaccines were poorly immunogenic, new genetic 'optimization' strategies and the application of in vivo electroporation (EP) have dramatically boosted their potency. We developed a highly optimized plasmid DNA vaccine that expresses the lymphocytic choriomeningitis virus (LCMV) nucleocapsid protein (NP) and evaluated it using the LCMV challenge model, a gold standard for studying infection and immunity. When administered intramuscularly with EP, robust NP-specific cellular and humoral immune responses were elicited, the magnitudes of which approached those following acute LCMV infection. Furthermore, these responses were capable of providing 100% protection against a high-dose, normally lethal virus challenge. This is the first non-infectious vaccine conferring complete protective immunity up to 8 weeks after vaccination and demonstrates the potential of 'next-generation' DNA vaccines.
Collapse
|