1
|
Tian RR, Zhang MX, Zhang LT, Zhang P, Ma JP, Liu M, Devenport M, Zheng P, Zhang XL, Lian XD, Ye M, Zheng HY, Pang W, Zhang GH, Zhang LG, Liu Y, Zheng YT. CD24 and Fc fusion protein protects SIVmac239-infected Chinese rhesus macaque against progression to AIDS. Antiviral Res 2018; 157:9-17. [PMID: 29983395 DOI: 10.1016/j.antiviral.2018.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023]
Abstract
Chronic immune activation and systemic inflammation are underlying causes of acquired immunodeficiency syndrome (AIDS). Products of virus replication and microbial translocation, co-infection or opportunistic pathogens, and danger-associated molecular patterns have been reported to contribute to chronic immune activation and inflammation in human immunodeficiency virus type-1/simian immunodeficiency virus (HIV-1/SIV) infection or other disease. To develop new strategies and therapies for HIV-1/AIDS, we tested if the CD24 and Fc fusion protein (CD24Fc), which interacts with danger-associated molecular patterns and sialic acid binding Ig-like lectin to attenuate inflammation, can protect Chinese rhesus macaques (ChRMs) with SIV infection. We found that CD24Fc treatment decreased weight loss, wasting syndrome, intractable diarrhea, and AIDS morbidity and mortality, while it was well tolerated by SIV-infected animals. Corresponding to the elimination of intractable diarrhea, CD24Fc significantly reduced the expression of IL-6 and indoleamine 2, 3-dioxygenase-1 in peripheral blood mononuclear cell and inflammation in the ileum, colon and rectum based on the reduction of inflammatory cells, pathological scores and expression of inflammatory cytokines. Furthermore, although CD24Fc did not restore CD4+ T cell number or significantly change T cell subsets or CD4+ T cell activation, it maintained low levels of plasma soluble CD14, CD8+ T cell activation, viral load and proviral load in the peripheral blood mononuclear cells and marrow. These results suggested that CD24Fc confers protection to SIV-infected ChRMs against progression to AIDS. It was also implied that CD24Fc may be a potential therapeutic approach for the control of HIV-1/AIDS.
Collapse
Affiliation(s)
- Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Lin-Tao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Peng Zhang
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | - Jian-Ping Ma
- CAS Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingyue Liu
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA
| | | | - Pan Zheng
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA; OncoImmune, Inc., Rockville, MD, USA
| | - Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Mei Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Gao-Hong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Li-Guo Zhang
- CAS Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yang Liu
- Center for Cancer and Immunology Research and Division of Pathology, Children's Research Institute, Children's National Medical Center, Washington DC 20010, USA; OncoImmune, Inc., Rockville, MD, USA.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; The National Kunming High Level Biosafety Research Center for Nonhuman Primate, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
2
|
Generation and evaluation of clade C simian-human immunodeficiency virus challenge stocks. J Virol 2014; 89:1965-74. [PMID: 25473043 DOI: 10.1128/jvi.03279-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The development of a panel of mucosally transmissible simian-human immunodeficiency virus (SHIV) challenge stocks from multiple virus clades would facilitate preclinical evaluation of candidate HIV-1 vaccines and therapeutics. The majority of SHIV stocks that have been generated to date have been derived from clade B HIV-1 env sequences from viruses isolated during chronic infection and typically required serial animal-to-animal adaptation for establishing mucosal transmissibility and pathogenicity. To capture essential features of mucosal transmission of clade C viruses, we produced a series of SHIVs with early clade C HIV-1 env sequences from acutely HIV-1-infected individuals from South Africa. SHIV-327c and SHIV-327cRM expressed env sequences that were 99.7 to 100% identical to the original HIV-1 isolate and did not require in vivo passaging for mucosal infectivity. These challenge stocks infected rhesus monkeys efficiently by both intrarectal and intravaginal routes, replicated to high levels during acute infection, and established chronic setpoint viremia in 13 of 17 (76%) infected animals. The SHIV-327cRM challenge stock was also titrated for both single, high-dose intrarectal challenges and repetitive, low-dose intrarectal challenges in rhesus monkeys. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines and other interventions aimed at preventing clade C HIV-1 infection. IMPORTANCE We describe the development of two related clade C SHIV challenge stocks. These challenge stocks should prove useful for preclinical testing of vaccines and other interventions aimed at preventing clade C HIV-1 infection.
Collapse
|
3
|
Henning TR, Hanson D, Vishwanathan SA, Butler K, Dobard C, Garcia-Lerma G, Radzio J, Smith J, McNicholl JM, Kersh EN. Short communication: Viremic control is independent of repeated low-dose SHIVSF162p3 exposures. AIDS Res Hum Retroviruses 2014; 30:1125-9. [PMID: 25313448 DOI: 10.1089/aid.2014.0238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repeat low-dose virus challenge model is commonly used in nonhuman primate studies of HIV transmission and biomedical preventions. For some viruses or challenge routes, it is uncertain whether the repeated exposure design might induce virus-directed innate or adaptive immunity that could affect infection or viremic outcomes. Retrospective cohorts of male Indian rhesus (n=40) and female pigtail (n=46) macaques enrolled in repeat low-dose rectal or vaginal SHIV(SF162p3) challenge studies, respectively, were studied to compare the relationship between the number of previous exposures and peak plasma SHIV RNA levels or viral load area under the curve (AUC), surrogate markers of viral control. Repeated mucosal exposures of 10 or 50 TCID50 of virus for rectal and vaginal exposures, respectively, were performed. Virus levels were measured by quantitative reverse-transcriptase real-time PCR. The cumulative number of SHIV(SF162p3) exposures did not correlate with observed peak virus levels or with AUC in rectally challenged rhesus macaques [peak: rho (ρ)=0.04, p=0.8; AUC: ρ=0.33, p=0.06] or vaginally challenged pigtail macaques (peak: ρ=-0.09, p=0.7; AUC: ρ=0.11, p=0.6). Infections in these models occur independently of exposure history and provide assurance that neither inoculation route nor number of exposures required for infection correlates with postinfection viremia. These data also indicate that both the vaginal and rectal repeated low-dose virus exposure models using SHIV(SF162p3) provide a reliable system for nonhuman primate studies.
Collapse
Affiliation(s)
- Tara R. Henning
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Hanson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Katherine Butler
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charles Dobard
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gerardo Garcia-Lerma
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica Radzio
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James Smith
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet M. McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ellen N. Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
4
|
Butler K, Morgan JS, Hanson DL, Adams D, Garcia-Lerma JG, Heneine W, Ellenberger D, Hendry RM, McNicholl J, Johnson WE, Kersh EN. Susceptibility to repeated, low-dose, rectal SHIVSF162P3 challenge is independent of TRIM5 genotype in rhesus macaques. AIDS Res Hum Retroviruses 2013; 29:1091-4. [PMID: 23461569 DOI: 10.1089/aid.2012.0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infections following repeated, low-dose (RLD), mucal S(H)IV exposures of macaques are used to model sexual HIV exposures for biomedical prevention testing. Different susceptibilities among animals can complicate study designs. In rhesus macaques, TRIM5 alleles Q, CypA, and TFP are resistance factors for infection with some S(H)IV strains, but not for SIVmac239 due to its capsid properties. SIVmac239-derived SHIVSF162P3 has been demonstrated to reproducibly infect mucosally in vaginal and rectal RLD models. To further test the suitability of SHIVSF162P3 for RLD models, we studied the influence of the TRIM5 genotype on susceptibility to rectal RLD infection and on plasma viremia by analyzing 43 male Indian rhesus macaques from control arms of completed studies. The median number of exposures required for infection was three (Q/Q, n=4) (TRIM5 alleles, number of macaques, respectively), four (Q/CypA, n=7), three (TFP/Q, n=15), three (TFP/TFP, n=15), and two (TFP/CypA, n=2); TRIM5(CypA/CypA) was not represented in our study. Median peak viremia (log10 viral copies/ml) in infected animals was 7.4 (Q/Q, n=4), 7.2 (Q/CypA, n=6), 7.3 (TFP/Q, n=13), 7.1 (TFP/TFP, n=15), and 6.5 (TFP/CypA; n=2). Neither susceptibility nor peak viremia was significantly different (log rank test, Kruskal-Wallis test, respectively). Rhesus macaques' susceptibility to RLD SHIVSF162P3 is independent of the TRIM5 TFP, CypA, and Q alleles, with the limitation that the power to detect any impact of CypA/CypA and TFP/CypA genotypes was nonexistent or low, due to absence or infrequency, respectively. The finding that TRIM5 alleles do not restrict mucosal infection or ensuing replication rates suggests that SHIVSF162P3 is indeed suitable for RLD experimentation.
Collapse
Affiliation(s)
| | | | - Debra L. Hanson
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Adams
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Walid Heneine
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Janet McNicholl
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Ellen N. Kersh
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
5
|
Vasconcelos JR, Dominguez MR, Araújo AF, Ersching J, Tararam CA, Bruna-Romero O, Rodrigues MM. Relevance of long-lived CD8(+) T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination. Front Immunol 2012; 3:358. [PMID: 23264773 PMCID: PMC3525016 DOI: 10.3389/fimmu.2012.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
Owing to the importance of major histocompatibility complex class Ia-restricted CD8(+) T cells for host survival following viral, bacterial, fungal, or parasitic infection, it has become largely accepted that these cells should be considered in the design of a new generation of vaccines. For the past 20 years, solid evidence has been provided that the heterologous prime-boost regimen achieves the best results in terms of induction of long-lived protective CD8(+) T cells against a variety of experimental infections. Although this regimen has often been used experimentally, as is the case for many vaccines, the mechanism behind the efficacy of this vaccination regimen is still largely unknown. The main purpose of this review is to examine the characteristics of the protective CD8(+) T cells generated by this vaccination regimen. Part of its efficacy certainly relies on the generation and maintenance of large numbers of specific lymphocytes. Other specific characteristics may also be important, and studies on this direction have only recently been initiated. So far, the characterization of these protective, long-lived T cell populations suggests that there is a high frequency of polyfunctional T cells; these cells cover a large breadth and display a T effector memory (TEM) phenotype. These TEM cells are capable of proliferating after an infectious challenge and are highly refractory to apoptosis due to a control of the expression of pro-apoptotic receptors such as CD95. Also, they do not undergo significant long-term immunological erosion. Understanding the mechanisms that control the generation and maintenance of the protective activity of these long-lived TEM cells will certainly provide important insights into the physiology of CD8(+) T cells and pave the way for the design of new or improved vaccines.
Collapse
Affiliation(s)
- José R Vasconcelos
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Kersh EN, Luo W, Adams DR, Mitchell J, Garcia-Lerma JG, Heneine W, Folks TM, Butera S, Otten RA. Short communication: no evidence of occult SHIV infection as demonstrated by CD8+ cell depletion after chemoprophylaxis-induced protection from mucosal infection in rhesus macaques. AIDS Res Hum Retroviruses 2008; 24:543-6. [PMID: 18370590 DOI: 10.1089/aid.2007.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Preexposure prophylaxis (PrEP) with antiretroviral drugs constitutes a promising strategy for HIV prevention. Potent PrEP regimens with reverse transcriptase inhibitors can prevent detectable SHIV infection in a repeated low-dose macaque model that resembles human transmission, supporting plans to quickly move this approach into human trials. However, the possibility remains that extremely low levels of virus replication could nonetheless occur during PrEP and seed viral reservoirs in tissues. Therefore, seemingly protected macaques may harbor occult virus that may be initially contained by cytotoxic T cells, but could emerge later. To explore this possibility, we studied whether CD8(+) cells suppress viremia in four rhesus macaques apparently protected by daily or intermittent Truvada (FTC and tenofovir) during 14 low-dose, rectal SHIV(SF162P3) challenges and during a subsequent drug washout period. CD8(+) cells were efficiently ablated with antibodies in these and two additional control macaques that were previously infected but had reached undetectable virus set points. During 4 weeks of follow-up, all four macaques remained free of plasma viremia and provirus in blood lymphocytes. In contrast, plasma viremia resurged to 10(6) to 10(7) copies per milliliter within 2 weeks in both control macaques. Thus, these results indicate that the undetectable viremia in the PrEP-protected macaques was not due to CD8(+) cells that were containing a low-level infection. Rather, the PrEP treatment created conditions in which infection was prevented, eliminated, or controlled by unknown mechanisms. These data provide important information for PrEP usage to prevent HIV transmission, and fully support the continued pursuit of PrEP prevention measures in humans.
Collapse
Affiliation(s)
- Ellen N. Kersh
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Wei Luo
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Debra R. Adams
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - James Mitchell
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - J. Gerardo Garcia-Lerma
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Walid Heneine
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Thomas M. Folks
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Sal Butera
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | - Ron A. Otten
- Division of HIV/AIDS prevention, NCHHSTP, CCID, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| |
Collapse
|