1
|
Kasten-Jolly J, Lawrence DA. Cellular and Molecular Immunity to Influenza Viruses and Vaccines. Vaccines (Basel) 2024; 12:389. [PMID: 38675771 PMCID: PMC11154265 DOI: 10.3390/vaccines12040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed "original antigenic sin" or, more recently, "immune imprinting" and "seniority". We have researched a comparison between the immune response to live flu infections and inactivated flu vaccinations. A brief history of antibody generation theories is presented, culminating in new findings about the immune-network theory and suggesting that a network of clones exists between anti-idiotypic antibodies and T cell receptors. Findings regarding the 2009 pandemic flu strain and immune responses to it are presented, including memory B cells and conserved regions within the hemagglutinin protein. The importance of CD4+ memory T cells and cytotoxic CD8+ T cells responding to both infections and vaccinations are discussed and compared. Innate immune cells, like natural killer (NK) cells and macrophages, are discussed regarding their roles in adaptive immune responses. Antigen presentation via macroautophagy processes is described. New vaccines in development are mentioned along with the results of some clinical trials. The manuscript concludes with how repeated vaccinations are impacting the immune system and a sketch of what might be behind the imprinting phenomenon, including future research directions.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
| | - David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
- Departments of Biomedical Science and Environmental Health Science, University at Albany School of Public Health, Rensselaer, NY 12144, USA
| |
Collapse
|
2
|
Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines 2019; 18:379-392. [PMID: 30777467 DOI: 10.1080/14760584.2019.1582338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Various viruses, including poxviruses, adenoviruses and vesicular stomatitis virus, have been considered as vaccine vectors for the delivery of antigens of interest in the development of vaccines against newly emerging pathogens. AREAS COVERED Here, we review results that have been obtained with influenza A viruses (IAV) as vaccine vectors. With the advent of reverse genetics technology, IAV-based recombinant vaccine candidates have been constructed that induce protective immunity to a variety of different pathogens of interest, including West Nile virus, Plasmodium falciparum and respiratory syncytial virus. The various cloning strategies to produce effective and attenuated, safe to use IAV-based viral vectors are discussed. EXPERT COMMENTARY It was concluded that IAV-based vector system has several advantages and holds promise for further development.
Collapse
Affiliation(s)
- Thomas Gerlach
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Husni Elbahesh
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Giulietta Saletti
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Guus F Rimmelzwaan
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| |
Collapse
|
3
|
Fan S, Wang Y, Wang X, Huang L, Zhang Y, Liu X, Zhu W. Analysis of the affinity of influenza A virus protein epitopes for swine MHC I by a modified in vitro refolding method indicated cross-reactivity between swine and human MHC I specificities. Immunogenetics 2018; 70:671-680. [PMID: 29992375 DOI: 10.1007/s00251-018-1070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022]
Abstract
In vitro refolding assays can be used to investigate the affinity and stability of the binding of epitope peptides to major histocompatibility complex (MHC) class I molecules, which are key factors in the presentation of peptides to cytotoxic T lymphocytes (CTLs). The recognition of peptide epitopes by CTLs is crucial for protection against influenza A virus (IAV) infection. The peptide-binding motif of the swine SLA-3*hs0202 molecule has been previously reported and partly overlaps with the binding motif of the most abundant human MHC allele, HLA-A*0201. In this study, we screened all the protein sequences of the swine-origin epidemic IAV strain A/Beijing/01/2009 (H1N1), and a total of 73 9-mer epitope peptides were predicted to fit the consensus motif of the swine SLA-3*hs0202 or HLA-A*0201 molecule. Then, 14 peptides were selected, and their affinities to SLA-3*hs0202 were tested by a modified in vitro refolding assay. Our results show that ten epitopes could tolerate gel filtration, indicating that these epitopes formed stable or partly stable complexes with SLA-3*hs0202. Eight out of the ten epitopes have been previously reported as HLA-A2-restricted epitopes, which implied cross-reactivity between swine and human MHC I specificities. Furthermore, the modified mini-system refolding method could be applied for the screening of peptides because the refolding efficiency remained almost unchanged with the positive peptide (HA-KMN9) subjected to size-exclusion chromatography and Resource Q anion-exchange chromatography. The results presented here provide new insight into the development of epitope-based vaccines to control IAV and increase our understanding of swine molecular immunology.
Collapse
Affiliation(s)
- Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China. .,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China.
| | - Yongli Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xian Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Wenshuai Zhu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| |
Collapse
|
4
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
5
|
Structural and Biochemical Analyses of Swine Major Histocompatibility Complex Class I Complexes and Prediction of the Epitope Map of Important Influenza A Virus Strains. J Virol 2016; 90:6625-6641. [PMID: 27170754 DOI: 10.1128/jvi.00119-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The lack of a peptide-swine leukocyte antigen class I (pSLA I) complex structure presents difficulties for the study of swine cytotoxic T lymphocyte (CTL) immunity and molecule vaccine development to eliminate important swine viral diseases, such as influenza A virus (IAV). Here, after cloning and comparing 28 SLA I allelic genes from Chinese Heishan pigs, pSLA-3*hs0202 was crystalized and solved. SLA-3*hs0202 binding with sβ2m and a KMNTQFTAV (hemagglutinin [HA]-KMN9) peptide from the 2009 pandemic swine H1N1 strain clearly displayed two distinct conformations with HA-KMN9 peptides in the structures, which are believed to be beneficial to stimulate a broad spectrum of CTL immune responses. Notably, we found that different HA-KMN9 conformations are caused, not only by the flexibility of the side chains of residues in the peptide-binding groove (PBG), but also by the skewing of α1 and α2 helixes forming the PBG. In addition, alanine scanning and circular-dichroism (CD) spectra confirmed that the B, D, and F pockets play critical biochemical roles in determining the peptide-binding motif of SLA-3*hs0202. Based on biochemical parameters and comparisons to similar pockets in other known major histocompatibility complex class I (MHC-I) structures, the fundamental motif for SLA-3*hs0202 was determined to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) by refolding in vitro and multiple mutant peptides. Finally, 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains, and two of them have been found in humans as HLA-A*0201-specific IAV epitopes. Structural and biochemical illumination of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine. IMPORTANCE We crystalized and solved the first SLA-3 structure, SLA-3*hs0202, and found that it could present the same IAV peptide with two distinct conformations. Unlike previous findings showing that variable peptide conformations are caused only by the flexibility of the side chains in the groove, the skewing of the α1 and α2 helixes is important in the different peptide conformations in SLA-3*hs0202. We also determined the fundamental motif for SLA-3*hs0202 to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) based on a series of structural and biochemical analyses, and 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains. We believe our structure and analyses of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine.
Collapse
|
6
|
Garulli B, Di Mario G, Stillitano MG, Kawaoka Y, Castrucci MR. Exploring mucosal immunization with a recombinant influenza virus carrying an HIV-polyepitope in mice with pre-existing immunity to influenza. Vaccine 2014; 32:2501-6. [DOI: 10.1016/j.vaccine.2014.02.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
7
|
Liu J, Wu B, Zhang S, Tan S, Sun Y, Chen Z, Qin Y, Sun M, Shi G, Wu Y, Sun M, Liu N, Ning K, Ma Y, Gao B, Yan J, Zhu F, Wang H, Gao GF. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur J Immunol 2013; 43:2055-69. [PMID: 23681926 DOI: 10.1002/eji.201343417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/05/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Novel strains of influenza A viruses (IAVs) have emerged with high infectivity and/or pathogenicity in recent years, causing worldwide concern. T cells are correlated with protection in humans through cross-reactive immunity against heterosubtypes of IAV. However, the different hierarchical roles of IAV-derived epitopes with distinct levels of polymorphism in the cross-reactive T-cell responses against IAV remain elusive. In this study, immunodominant epitopes scattered throughout the entire proteome of 2009 pandemic influenza A H1N1 virus and seasonal IAVs were synthesized and divided into different pools depending on their conservation. The overall profile of the IAV-specific CD8(+) T-cell immunity was detected by utilizing these peptide pools and also individual peptides. A dominant role of the conserved peptide-specific T-cell immunity was illuminated within the anti-IAV responses, while the CD8(+) T-cell responses against the variable epitopes were lower than the conserved peptides. As previously demonstrated within a Caucasian population, we determined that GL9-specific T cells, which also utilize Vβ 17 TCR (BV19), play a pivotal role in IAV-specific T-cell immunity within an HLA-A2(+) Asian population. Our study objectively reveals the different predominant roles of T-cell epitopes among IAV-specific cross-reactive cellular immunity. This may guide the development of vaccines with cross-T-cell immunogenicity against heterosubtypes of IAV.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang Y, Zeng X, Zhu W, Li SS, Zhou D, Lu CJ. [Correlation between T lymphocyte subsets and different syndrome types in patients with influenza A (H1N1): a retrospective study]. ACTA ACUST UNITED AC 2011; 9:143-7. [PMID: 21288448 DOI: 10.3736/jcim20110205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the changes in T lymphocyte subsets in patients with different syndrome types infected by influenza A (H1N1) virus after treatment. METHODS In this retrospective study, 111 patients with H1N1 influenza were enrolled and divided into three groups according to their syndromes: exterior heat syndrome group (55 cases), exterior cold syndrome group (20 cases) and heat toxin invading lung (HTIL) syndrome group (36 cases). Patients were treated with Western medicine (acetaminophen or ibuprofen suspension), traditional Chinese medicine (herbal medicine according to their syndromes), or a combination of Western medicine and traditional Chinese medicine with patient's intentions. Another 20 healthy people were selected as normal control. Phenotypic features of T lymphocyte subsets in peripheral vein blood of patients before and after treatment were determined by flow cytometry. RESULTS Before treatment, the numbers of CD3- and CD4-positive T lymphocytes were lower in H1N1 patients with the three types of syndromes than in the normal controls (P<0.01), and the numbers of CD8-positive T lymphocytes were lower in exterior heat syndrome and HTIL syndrome groups than in normal control group (P<0.01). The ratio of CD4-positive to CD8-positive T lymphocytes in exterior cold syndrome group showed no difference as compared with the normal control group, and the ratios of CD4-positive to CD8-positive T lymphocytes in exterior heat syndrome and HTIL syndrome groups were higher than that in the normal control group (P<0.01). After treatment, the numbers of CD4-positive T lymphocytes increased in all the three types of syndromes in patients with H1N1, and showed no difference compared with the normal control group. The numbers of CD3-positive T lymphocytes in patients with exterior heat syndrome and exterior cold syndrome increased, and showed no difference compared with the normal control group. The number of CD3-positive T lymphocytes in H1N1 patients with HTIL syndrome was lower than that in the normal control group (P<0.05), whereas the numbers of CD8-positive T lymphocytes in patients with exterior heat syndrome and HTIL syndrome were lower than that in the normal control group (P<0.05). The ratio of CD4-positive to CD8-positive T lymphocytes in patients with HTIL syndrome was decreased, and displayed no difference as compared with the normal control group. The ratio of CD4-positive to CD8-positive T lymphocytes in patients with exterior heat syndrome was higher than that in the normal control group (P<0.05). CONCLUSION Analysis of T lymphocyte subsets may provide experimental data to support for syndrome differentiation in traditional Chinese medicine and a sound method to establish syndrome differentiation typing for H1N1.
Collapse
Affiliation(s)
- Yu Huang
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|