1
|
Gao H, Wang Y, Gao L, Zheng SJ. Genetic Insight into the Interaction of IBDV with Host-A Clue to the Development of Novel IBDV Vaccines. Int J Mol Sci 2023; 24:ijms24098255. [PMID: 37175960 PMCID: PMC10179583 DOI: 10.3390/ijms24098255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is an immunosuppressive pathogen causing enormous economic losses to the poultry industry across the globe. As a double-stranded RNA virus, IBDV undergoes genetic mutation or recombination in replication during circulation among flocks, leading to the generation and spread of variant or recombinant strains. In particular, the recent emergence of variant IBDV causes severe immunosuppression in chickens, affecting the efficacy of other vaccines. It seems that the genetic mutation of IBDV during the battle against host response is an effective strategy to help itself to survive. Therefore, a comprehensive understanding of the viral genome diversity will definitely help to develop effective measures for prevention and control of infectious bursal disease (IBD). In recent years, considerable progress has been made in understanding the relation of genetic mutation and genomic recombination of IBDV to its pathogenesis using the reverse genetic technique. Therefore, this review focuses on our current genetic insight into the IBDV's genetic typing and viral genomic variation.
Collapse
Affiliation(s)
- Hui Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
A novel inactivated bivalent vaccine for chickens against emerging hepatitis-hydropericardium syndrome and infectious bursal disease. Vet Microbiol 2022; 266:109375. [DOI: 10.1016/j.vetmic.2022.109375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
|
3
|
Pan Q, Zhang Y, Liu A, Cui H, Gao Y, Qi X, Liu C, Zhang Y, Li K, Gao L, Wang X. Development of a Novel Avian Vaccine Vector Derived From the Emerging Fowl Adenovirus 4. Front Microbiol 2021; 12:780978. [PMID: 34925286 PMCID: PMC8671827 DOI: 10.3389/fmicb.2021.780978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
Severe hepatitis-hydropericardium syndrome (HHS) associated with a novel viral genotype, fowl adenovirus 4 (FAdV-4), has emerged and widely spread in China since 2015, causing severe economic losses to the poultry industry. We previously reported that the hexon gene is responsible for pathogenicity and obtained a non-pathogenic hexon-replacement rHN20 strain; however, the lack of information about the non-essential regions for virus replication limits the development of a FAdV-4 vector. This study first established an enhanced green fluorescent protein (EGFP)-indicator virus based on the FAdV-4 reverse genetic technique, effective for batch operations in the virus genome. Based on this, 10 open reading frames (ORFs) at the left end and 13 ORFs at the right end of the novel FAdV-4 genome were deleted separately and identified as non-essential genes for viral replication, providing preliminary insertion sites for foreign genes. To further improve its feasibility as a vaccine vector, seven combinations of ORFs were successfully replaced with EGFP without affecting the immunogenicity of the vector backbone. Finally, a recombinant rHN20-vvIBDV-VP2 strain, expressing the VP2 protein of very virulent infectious bursa disease virus (vvIBDV), was rescued and showed complete protection against FAdV-4 and vvIBDV. Thus, the novel FAdV-4 vector could provide sufficient protection for HHS and efficient exogenous gene delivery. Overall, our findings systemically identified 23 non-essential ORFs for FAdV-4 replication and seven foreign gene insertion regions, providing valuable information for an in-depth understanding of the novel FAdV-4 pathogenesis and development of multivalent vaccines.
Collapse
Affiliation(s)
- Qing Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Aijing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Development of a Viral-Like Particle Candidate Vaccine Against Novel Variant Infectious Bursal Disease Virus. Vaccines (Basel) 2021; 9:vaccines9020142. [PMID: 33579020 PMCID: PMC7916800 DOI: 10.3390/vaccines9020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.
Collapse
|
5
|
Rapid Generation of Attenuated Infectious Bursal Disease Virus from Dual-Promoter Plasmids by Reduction of Viral Ribonucleoprotein Activity. J Virol 2020; 94:JVI.01569-19. [PMID: 31915284 DOI: 10.1128/jvi.01569-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Infectious bursal disease virus (IBDV) of the Birnaviridae family leads to immunosuppression of young chickens by destroying B cells in the bursa of Fabricius (BFs). Given the increasing number of variant IBDV strains, we urgently require a method to produce attenuated virus for vaccine development. To accomplish this goal, the dual-promoter plasmids in which the RNA polymerase II and RNA polymerase I (Pol I) promoters were placed upstream of the IBDV genomic sequence, which was followed by mouse Pol I terminator and a synthetic polyadenylation signal, were developed for rapid generation of IBDV. This approach did not require trans-supplementation of plasmids for the expression of VP1 and VP3, the main components of IBDV ribonucleoprotein (RNP). Based on the finding in this study that the IBDV RNP activity was partially retained by VP1-FLAG, we successfully rescued the replication-competent IBDV/1FLAG expressing VP1-FLAG. Compared with its parental counterpart, IBDV/1FLAG formed smaller size plaques in cultured cells and induced the same 100% immune protection in vivo However, neither retarded development nor severe BFs lesion was observed in the IBDV/1FLAG-inoculated chickens. Collectively, this is the first report that viral RNP activity was affected by the addition of an epitope tag on the componential viral proteins. Furthermore, this work demonstrates the rapid generation of attenuated IBDV from dual-promoter plasmids via reducing viral RNP activity by a fused FLAG tag on the C terminus of VP1. This would be a convenient strategy to attenuate epidemic variant IBDV strains for rapid and efficient vaccine development.IMPORTANCE Immunosuppression in chickens as a result of infectious bursal disease virus (IBDV) infection leads to significant economic losses in the poultry industry worldwide every year. Currently, vaccination is still the best way to prevent the prevalence of IBDV. However, with the occurrence of increasing numbers of variant IBDV strains, it is challenging to develop antigen-matched live attenuated vaccine. Here, we first developed a dual-promoter reverse-genetic system for the rapid generation of IBDV. Using this system, the attenuated IBDV/1FLAG expressing VP1-FLAG, which displays the decreased viral RNP activity, was rescued. Moreover, IBDV/1FLAG inoculation induced a similar level of neutralizing antibodies to that of its parental counterpart, protecting chickens against lethal challenge. Our study, for the first time, describes a dual-promoter reverse-genetic approach for the rapid generation of attenuated IBDV while maintaining entire parental antigenicity, suggesting a potential new method to attenuate epidemic variant IBDV strains for vaccine development.
Collapse
|
6
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
7
|
Silva JVJ, Arenhart S, Santos HF, Almeida-Queiroz SR, Silva ANMR, Trevisol IM, Bertani GR, Gil LHVG. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast. Braz J Microbiol 2015; 45:1555-63. [PMID: 25763067 PMCID: PMC4323336 DOI: 10.1590/s1517-83822014000400054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/17/2014] [Indexed: 12/03/2022] Open
Abstract
The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development.
Collapse
Affiliation(s)
- J V J Silva
- Departamento de Virologia e Terapia Experimental Centro de Pesquisas Aggeu Magalhães Fundação Oswaldo Cruz RecifePE Brazil Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil
| | - S Arenhart
- Departamento de Virologia e Terapia Experimental Centro de Pesquisas Aggeu Magalhães Fundação Oswaldo Cruz RecifePE Brazil Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil. ; Setor de Virologia, Departamento de Medicina Veterinária Preventiva Centro de Ciências Rurais Universidade Federal de Santa Maria Santa MariaRS Brazil Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - H F Santos
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde Universidade Federal do Rio Grande do Sul Porto AlegreRS Brazil Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S R Almeida-Queiroz
- Departamento de Virologia e Terapia Experimental Centro de Pesquisas Aggeu Magalhães Fundação Oswaldo Cruz RecifePE Brazil Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil
| | - A N M R Silva
- Departamento de Virologia e Terapia Experimental Centro de Pesquisas Aggeu Magalhães Fundação Oswaldo Cruz RecifePE Brazil Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil
| | - I M Trevisol
- Embrapa Suínos e Aves ConcórdiaSC Brazil Embrapa Suínos e Aves, Concórdia, SC, Brazil
| | - G R Bertani
- Departamento de Bioquímica e Laboratório de Imunopatologia Keiso Asami Universidade Federal de Pernambuco RecifePE Brazil Departamento de Bioquímica e Laboratório de Imunopatologia Keiso Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - L H V G Gil
- Departamento de Virologia e Terapia Experimental Centro de Pesquisas Aggeu Magalhães Fundação Oswaldo Cruz RecifePE Brazil Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil
| |
Collapse
|
8
|
A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus. Vaccine 2014; 32:1436-43. [DOI: 10.1016/j.vaccine.2014.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 11/22/2022]
|
9
|
Qi X, Zhang L, Chen Y, Gao L, Wu G, Qin L, Wang Y, Ren X, Gao Y, Gao H, Wang X. Mutations of residues 249 and 256 in VP2 are involved in the replication and virulence of infectious Bursal disease virus. PLoS One 2013; 8:e70982. [PMID: 23923037 PMCID: PMC3724781 DOI: 10.1371/journal.pone.0070982] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. Although the PDE and PFG domains of the capsid protein VP2 contribute significantly to virulence and fitness, the detailed molecular basis for the pathogenicity of IBDV is still not fully understood. Because residues 253 and 284 of VP2 are not the sole determinants of virulence, we hypothesized that other residues involved in virulence and fitness might exist in the PDE and PFG domains of VP2. To test this, five amino acid changes selected by sequence comparison of the PDE and PFG domains of VP2 were introduced individually using a reverse genetics system into the virulent strain (rGx-F9VP2). Then reverse mutations of the selected residues 249 and 256 were introduced individually into the attenuated strain (rGt). Seven modified viruses were generated and evaluated in vitro (CEF cells) and in vivo (SPF chicken). For residue 249, Q249R could elevate in vitro and reduce in vivo the replication of rGx-F9VP2 while R249Q could reduce in vitro and elevate in vivo the replication of rGt; meanwhile Q249R reduced the virulence of rGx-F9VP2 while R249Q increased the virulence of rGt, which indicated that residue 249 significantly contributed to the replication and virulence of IBDV. For residue 256, I256V could elevate in vitro and reduce in vivo the replication of rGx-F9VP2 while V256I could reduce in vitro but didn't change in vivo the replication of rGt; although V256I didn't increase the virulence of rGt, I256V obviously reduced the virulence of virulent IBDV. The present results demonstrate for the first time, to different extent, residues 249 and 256 of VP2 are involved in the replication efficiency and virulence of IBDV; this is not only beneficial to further understanding of pathogenic mechanism but also to the design of newly tailored vaccines against IBDV.
Collapse
Affiliation(s)
- Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Lizhou Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yuming Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Guan Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liting Qin
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiangang Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
10
|
Li K, Gao L, Gao H, Qi X, Gao Y, Qin L, Wang Y, Wang X. Codon optimization and woodchuck hepatitis virus posttranscriptional regulatory element enhance the immune responses of DNA vaccines against infectious bursal disease virus in chickens. Virus Res 2013; 175:120-7. [PMID: 23631937 DOI: 10.1016/j.virusres.2013.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to evaluate the protective efficacy of DNA vaccines against infectious bursal disease virus (IBDV) in chickens and to determine whether codon optimization and the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) could improve the immunogenicity of the DNA vaccines. The VP2, VP243 and codon-optimized VP243 genes of IBDV were cloned into pCAGGS vector, and designated as pCAGVP2, pCAGVP243 and pCAGoptiVP243, respectively. Plasmids pCAGWVP243 and pCAGWoptiVP243 carrying the WPRE elements were also constructed as DNA vaccines. To evaluate vaccine efficacy, 2-week-old chickens were injected intramuscularly with the constructed plasmids twice at 2-week intervals and challenged with very virulent IBDV 2 weeks post-boost. Plasmid pCAGVP243 induced better immune responses than pCAGVP2. Chickens immunized with pCAGoptiVP243 and pCAGWVP243 had higher levels of antibody titers, lymphoproliferation responses and cytokine production compared with pCAGVP243. Furthermore, plasmid pCAGWoptiVP243 induced the highest levels of immune responses among the groups. After challenged, DNA vaccines pCAGVP2, pCAGVP243, pCAGoptiVP243, pCAGWVP243 and pCAGWoptiVP243 conferred protection for 33%, 60%, 80%, 87% and 100% of chickens, respectively, as evidenced by the absence of clinical signs, mortality, and bursal atrophy. These results indicate that codon optimization and WPRE could enhance the protective efficacy of DNA vaccines against IBDV and these two approaches could work together synergistically in a single DNA vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Birnaviridae Infections/mortality
- Birnaviridae Infections/pathology
- Birnaviridae Infections/prevention & control
- Cell Proliferation
- Chickens
- Cytokines/metabolism
- Gene Expression
- Hepatitis B Virus, Woodchuck/genetics
- Infectious bursal disease virus/genetics
- Infectious bursal disease virus/immunology
- Injections, Intramuscular
- Leukocytes, Mononuclear/immunology
- Protein Biosynthesis
- Regulatory Elements, Transcriptional
- Survival Analysis
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | | | |
Collapse
|