1
|
Afshari E, Ahangari Cohan R, Shams Nosrati MS, Mousavi SF. Development of a bivalent protein-based vaccine candidate against invasive pneumococcal diseases based on novel pneumococcal surface protein A in combination with pneumococcal histidine triad protein D. Front Immunol 2023; 14:1187773. [PMID: 37680628 PMCID: PMC10480505 DOI: 10.3389/fimmu.2023.1187773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Extensive efforts have been made toward improving effective strategies for pneumococcal vaccination, focusing on evaluating the potential of multivalent protein-based vaccines and overcoming the limitations of pneumococcal polysaccharide-based vaccines. In this study, we investigated the protective potential of mice co-immunization with the pneumococcal PhtD and novel rPspA proteins against pneumococcal sepsis infection. The formulations of each antigen alone or in combination were administered intraperitoneally with alum adjuvant into BALB/c mice three times at 14-day intervals. The production of antigen-specific IgG, IgG1 and IgG2a subclasses, and IL-4 and IFN-γ cytokines, were analyzed. Two in vitro complement- and opsonophagocytic-mediated killing activities of raised antibodies on day 42 were also assessed. Finally, the protection against an intraperitoneal challenge with 106 CFU/mouse of multi-drug resistance of Streptococcus pneumoniae ATCC49619 was investigated. Our findings showed a significant increase in the anti-PhtD and anti-rPspA sera IgG levels in the immunized group with the PhtD+rPspA formulation compared to each alone. Moreover, the results demonstrated a synergistic effect with a 6.7- and 1.3- fold increase in anti-PhtD and anti-rPspA IgG1, as well as a 5.59- and 1.08- fold increase in anti-PhtD and anti-rPspA IgG2a, respectively. Co-administration of rPspA+PhtD elicited a mixture of Th-2 and Th-1 immune responses, more towards Th-2. In addition, the highest complement-mediated killing activity was observed in the sera of the immunized group with PhtD+rPspA at 1/16 dilution, and the opsonophagocytic activity was increased from 74% to 86.3%. Finally, the survival rates showed that mice receiving the rPspA+PhtD formulation survived significantly longer (100%) than those receiving protein alone or PBS and exhibited the strongest clearance with a 2 log10 decrease in bacterial load in the blood 24h after challenge compared to the control group. In conclusion, the rPspA+PhtD formulation can be considered a promising bivalent serotype-independent vaccine candidate for protection against invasive pneumococcal infection in the future.
Collapse
Affiliation(s)
- Elnaz Afshari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
2
|
Evaluation of Protective Efficacy of Selected Immunodominant B-Cell Epitopes within Virulent Surface Proteins of Streptococcus pneumoniae. Infect Immun 2018; 86:IAI.00673-17. [PMID: 29263108 DOI: 10.1128/iai.00673-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023] Open
Abstract
Four previously identified immunodominant B-cell epitopes, located within known virulent pneumococcal proteins CbpD, PhtD, PhtE, and ZmpB, had shown promising in vivo immunological characteristics, indicating their potential to be used as vaccine antigens. In this study, we further evaluated the opsonophagocytic activity of antibodies against these epitopes and their capacity to protect mice from pneumococcal sepsis. An opsonophagocytic killing assay (OPKA) revealed that OPKA titers of human anti-peptide antibodies against pneumococcal serotypes 1, 3, and 19A were significantly higher (P < 0.001) than those of the control sera, suggesting their functional potential against virulent clinical isolates. Data obtained from mice actively immunized with any of the selected epitope analogues or with a mixture of these (G_Mix group) showed, compared to controls, enhanced survival against the highly virulent pneumococcal serotype 3 (P < 0.001). Moreover, passive transfer of hyperimmune serum from G_Mix to naive mice also conferred protection to a lethal challenge with serotype 3, which demonstrates that the observed protection was antibody mediated. All immunized murine groups elicited gradually higher antibody titers and avidity, suggesting a maturation of immune response over time. Among the tested peptides, PhD_pep19 and PhtE_pep40 peptides, which reside within the zinc-binding domains of PhtD and PhtE proteins, exhibited superior immunological characteristics. Recently it has been shown that zinc uptake is of high importance for the virulence of Streptococcus pneumoniae; thus, our findings suggest that these epitopes deserve further evaluation as novel immunoreactive components for the development of a polysaccharide-independent pneumococcal vaccine.
Collapse
|
3
|
Lourenço J, Watkins ER, Obolski U, Peacock SJ, Morris C, Maiden MCJ, Gupta S. Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Sci Rep 2017; 7:9023. [PMID: 28831154 PMCID: PMC5567354 DOI: 10.1038/s41598-017-08990-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Populations of Streptococcus pneumoniae (SP) are typically structured into groups of closely related organisms or lineages, but it is not clear whether they are maintained by selection or neutral processes. Here, we attempt to address this question by applying a machine learning technique to SP whole genomes. Our results indicate that lineages evolved through immune selection on the groEL chaperone protein. The groEL protein is part of the groESL operon and enables a large range of proteins to fold correctly within the physical environment of the nasopharynx, thereby explaining why lineage structure is so stable within SP despite high levels of genetic transfer. SP is also antigenically diverse, exhibiting a variety of distinct capsular serotypes. Associations exist between lineage and capsular serotype but these can be easily perturbed, such as by vaccination. Overall, our analyses indicate that the evolution of SP can be conceptualized as the rearrangement of modular functional units occurring on several different timescales under different pressures: some patterns have locked in early (such as the epistatic interactions between groESL and a constellation of other genes) and preserve the differentiation of lineages, while others (such as the associations between capsular serotype and lineage) remain in continuous flux.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | - Uri Obolski
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Peacock
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Domínguez-Hüttinger E, Boon NJ, Clarke TB, Tanaka RJ. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment. Front Physiol 2017; 8:115. [PMID: 28303104 PMCID: PMC5332394 DOI: 10.3389/fphys.2017.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We further designed optimal treatment strategies, with minimal strengths and minimal durations of antibiotics, for each of the three pathogenic behaviors distinguished by our model. The proposed mathematical framework will help to design better disease management strategies and new diagnostic markers that can be used to inform the most appropriate patient-specific treatment options.
Collapse
Affiliation(s)
- Elisa Domínguez-Hüttinger
- Department of Bioengineering, Imperial College LondonLondon, UK; Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Neville J Boon
- Department of Bioengineering, Imperial College London London, UK
| | | | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London London, UK
| |
Collapse
|
5
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
6
|
Liu N, Zhao Z, Tan Y, Lu L, Wang L, Liao Y, Beloglazova N, De Saeger S, Zheng X, Wu A. Simultaneous Raising of Rabbit Monoclonal Antibodies to Fluoroquinolones with Diverse Recognition Functionalities via Single Mixture Immunization. Anal Chem 2015; 88:1246-52. [DOI: 10.1021/acs.analchem.5b03637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Liu
- Key
Laboratory of Food Safety Research, Institute for Nutritional Sciences,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China
- Key
Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100021, China
- School
of Biosystems Engineering and Food Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhiyong Zhao
- Key
Laboratory of Food Safety Research, Institute for Nutritional Sciences,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China
- Key
Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100021, China
| | - Yanglan Tan
- Key
Laboratory of Food Safety Research, Institute for Nutritional Sciences,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China
- Key
Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100021, China
| | - Lei Lu
- School
of Biosystems Engineering and Food Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Lin Wang
- School
of Biosystems Engineering and Food Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yucai Liao
- College
of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Natalia Beloglazova
- Laboratory
of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Laboratory
of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg
460, 9000 Ghent, Belgium
| | - Xiaodong Zheng
- School
of Biosystems Engineering and Food Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Aibo Wu
- Key
Laboratory of Food Safety Research, Institute for Nutritional Sciences,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China
- Key
Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100021, China
| |
Collapse
|
7
|
Feldman C, Anderson R. Review: Current and new generation pneumococcal vaccines. J Infect 2014; 69:309-25. [DOI: 10.1016/j.jinf.2014.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
|
8
|
Mucosal immunization with recombinant fusion protein DnaJ-ΔA146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A. Infect Immun 2014; 82:1666-75. [PMID: 24491576 DOI: 10.1128/iai.01391-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (Ply) and its variants are protective against pneumococcal infections in animal models, and as a Toll-like receptor 4 agonist, pneumolysin has been reported to be a mucosal adjuvant. DnaJ has been approved as a useful candidate vaccine protein; we therefore designed novel fusion proteins of DnaJ with a form of Ply that has a deletion of A146 (ΔA146Ply-DnaJ [the C terminus of ΔA146Ply connected with the N terminus of DnaJ] and DnaJ-ΔA146Ply [the C terminus of DnaJ connected with the N terminus of ΔA146Ply]) to test whether they are protective against focal and lethal pneumococcal infections and their potential protective mechanisms. The purified proteins were used to intranasally immunize the animals without additional adjuvant. Immunization with DnaJ-ΔA146Ply or DnaJ plus ΔA146Ply (Ply with a single deletion of A146) could significantly reduce S. pneumoniae colonization in the nasopharynx and lung relative with DnaJ alone. Additionally, we observed the best protection for DnaJ-ΔA146Ply-immunized mice after challenge with lethal doses of S. pneumoniae strains, which was comparable to that achieved by PPV23. Mice immunized with DnaJ-ΔA146Ply produced significantly higher levels of anti-DnaJ IgG in serum and secretory IgA (sIgA) in saliva than those immunized with DnaJ alone. The production of IL-17A was also striking in DnaJ-ΔA146Ply-immunized mice. IL-17A knockout (KO) mice did not benefit from DnaJ-ΔA146Ply immunization in colonization experiments, and sIgA production was impaired in IL-17A KO mice. Collectively, our results indicate a mucosal adjuvant potential for ΔA146Ply and that, without additional adjuvant, DnaJ-ΔA146Ply fusion protein exhibits extensive immune stimulation and is effective against pneumococcal challenges, properties which are partially attributed to the IL-17A-mediated immune responses.
Collapse
|