1
|
Kumbe A, Negussie H, Getachew Y, Alemu B, Alemayehu G, Girma S, Sibhatu D, Emiyu K, Waktole H, Leta S. Epidemiology of peste des petits ruminants in selected districts of Borena zone, Ethiopia. BMC Vet Res 2024; 20:451. [PMID: 39375652 PMCID: PMC11457360 DOI: 10.1186/s12917-024-04312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Peste des petits ruminant (PPR) is a contagious disease caused by the peste des petits ruminants virus (PPRV). The disease poses a significant economic threat to small ruminant production in Ethiopia, particularly to the striving pastoral production system. A cross-sectional study was conducted to estimate the seroprevalence and associated risk factors of PPR in the small ruminants of the Borena Zone. A total of 384 serum samples were collected randomly from sheep and goats and examined for the presence of PPRV antibodies using competition enzyme-linked immune sorbent assay (c-ELISA). Additionally, a retrospective analysis of five years of outbreak data was performed to provide insight into the spatial and temporal distribution of the disease. RESULTS The seroprevalence of PPRV antibodies in nonvaccinated, vaccinated, and unknown vaccination status of small ruminants in this study was found to be 32.1%, 68.8%, and 45.5%, respectively. Multivariable logistic analysis revealed a statistically significant association between PPRV seropositivity and several factors, including age, animal origin, flock size, and veterinary services status. A retrospective analysis revealed 53 PPR outbreaks in the Borena Zone from 2018 to 2022, exacerbated by low vaccination coverage relative to the at-risk animal population. CONCLUSION The study revealed significant gaps in current vaccination efforts, with herd immunity levels falling below the FAO-WOAH recommended threshold of 80%. Despite Ethiopia's ambitious goal to eradicate PPR by 2027, the frequent outbreaks and insufficient herd immunity highlight the inadequacy of the existing strategies. To effectively move toward eradication, Ethiopia must align its approach with the global PPR eradication framework, which emphasizes a comprehensive strategy that includes diagnostics, surveillance, prevention, and the establishment of a robust veterinary regulatory system, rather than relying solely on vaccination. Overcoming logistical challenges, improving vaccination coverage, and optimizing the timing of vaccination campaigns, especially in hard-to-reach areas, will be crucial for reducing outbreaks and making progress toward eradication.
Collapse
Affiliation(s)
- Adem Kumbe
- Yabello Pastoral and Dryland Agriculture Research Center, Oromia Agricultural Research Institute, P.O. Box 85, Yabello, Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Yitbarek Getachew
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Biruk Alemu
- Animal and Human Health Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Gezahagn Alemayehu
- Animal and Human Health Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Sisay Girma
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Kemal Emiyu
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Hika Waktole
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
- Laboratory of Host-Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
2
|
Ithinji DG, Buchholz DW, Ezzatpour S, Monreal IA, Cong Y, Sahler J, Bangar AS, Imbiakha B, Upadhye V, Liang J, Ma A, Bradel-Tretheway B, Kaza B, Yeo YY, Choi EJ, Johnston GP, Huzella L, Kollins E, Dixit S, Yu S, Postnikova E, Ortega V, August A, Holbrook MR, Aguilar HC. Multivalent viral particles elicit safe and efficient immunoprotection against Nipah Hendra and Ebola viruses. NPJ Vaccines 2022; 7:166. [PMID: 36528644 PMCID: PMC9759047 DOI: 10.1038/s41541-022-00588-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Experimental vaccines for the deadly zoonotic Nipah (NiV), Hendra (HeV), and Ebola (EBOV) viruses have focused on targeting individual viruses, although their geographical and bat reservoir host overlaps warrant creation of multivalent vaccines. Here we explored whether replication-incompetent pseudotyped vesicular stomatitis virus (VSV) virions or NiV-based virus-like particles (VLPs) were suitable multivalent vaccine platforms by co-incorporating multiple surface glycoproteins from NiV, HeV, and EBOV onto these virions. We then enhanced the vaccines' thermotolerance using carbohydrates to enhance applicability in global regions that lack cold-chain infrastructure. Excitingly, in a Syrian hamster model of disease, the VSV multivalent vaccine elicited safe, strong, and protective neutralizing antibody responses against challenge with NiV, HeV, or EBOV. Our study provides proof-of-principle evidence that replication-incompetent multivalent viral particle vaccines are sufficient to provide protection against multiple zoonotic deadly viruses with high pandemic potential.
Collapse
Affiliation(s)
- Duncan G Ithinji
- School for Global Animal Health, Washington State University, Pullman, WA, USA.,Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - David W Buchholz
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Yu Cong
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Janie Liang
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Andrew Ma
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Benjamin Kaza
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Eun Jin Choi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Gunner P Johnston
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Louis Huzella
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Erin Kollins
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Saurabh Dixit
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Shuiqing Yu
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Elena Postnikova
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Ft Detrick, Frederick, MD, 21702, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Wang H, Bi J, Feng N, Zhao Y, Wang T, Li Y, Yan F, Yang S, Xia X. Construction of Recombinant Rabies Virus Vectors Expressing H or F Protein of Peste des Petits Ruminants Virus. Vet Sci 2022; 9:vetsci9100555. [PMID: 36288168 PMCID: PMC9610701 DOI: 10.3390/vetsci9100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Peste des petits ruminants (PPR) is one of the most contagious and fatal diseases of small ruminants. In this study, two recombinant viruses rSRV9-H and rSRV9-F, which express the envelope glycoprotein H (hemagglutinin protein) or F (fusion protein) protein, respectively, were successfully generated with a rabies virus as vector. The constructed viruses had good proliferative activity and stability and provided potential bivalent inactivated vaccine candidate strains for the prevention of PPR and livestock rabies. Abstract Peste des petits ruminants (PPR) is one of the most contagious and fatal diseases of small ruminants in the world and is classified as a category A epidemic disease. It is the target of a global eradication campaign led by the Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO). The PPR live attenuated vaccine is currently the most widely used and approved vaccine, but the use of this vaccine interferes with the serological testing of the PPR elimination program, and there is a potential safety risk. Viral vector vaccines are one of the most promising methods to solve this dilemma. In this study, the full-length infectious clone plasmid of rabies virus (RABV), pD-SRV9-PM-LASV, was used as the backbone, and the envelope glycoprotein H (hemagglutinin protein) or F (fusion protein) gene of PPRV was inserted into the backbone plasmid to construct the infectious clones pD-SRV9-PM-PPRV-H and pD-SRV9-PM-PPRV-F, which express the PPRV H and PPRV F genes, respectively. The correct construction of these infectious clones was verified after sequencing and double digestion. The infectious clones were transfected with a helper plasmid into BSR/T7 cells, and recombinant viruses were successfully rescued by direct immunofluorescence, indirect immunofluorescence, Western blotting, and transmission electron microscopy and named rSRV9-H and rSRV9-F. The results of growth kinetics studies indicated that the inserted gene did not affect virus proliferation. Stability studies revealed that the inserted target gene was stably expressed in recombinant RABV for at least 15 generations. In this study, the recombinant viruses rSRV9-H and rSRV9-F were successfully rescued. The constructed viruses had good proliferative activity and stability and provided potential bivalent inactivated vaccine candidate strains for the prevention of PPR and livestock rabies.
Collapse
Affiliation(s)
- Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 130118, China
| | - Jinhao Bi
- College of Veterinary Medicine, Jilin Agriculture University, Changchun 453003, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Yuetao Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 130118, China
- Correspondence: (Y.L.); (F.Y.)
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
- Correspondence: (Y.L.); (F.Y.)
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| |
Collapse
|
4
|
Zhao H, Njeumi F, Parida S, Benfield CTO. Progress towards Eradication of Peste des Petits Ruminants through Vaccination. Viruses 2021; 13:v13010059. [PMID: 33466238 PMCID: PMC7824732 DOI: 10.3390/v13010059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023] Open
Abstract
Peste des petits ruminants (PPR) is a transboundary viral disease that threatens more than 1.74 billion goats and sheep in approximately 70 countries globally. In 2015, the international community set the goal of eradicating PPR by 2030, and, since then, Food and Agriculture Organization of the United Nations (FAO) and World Organization for Animal Health (OIE) have jointly developed and implemented the Global Control and Eradication Strategy for PPR. Here, data from the United Nations Food and Agriculture Organization Statistical Database (FAOSTAT), the OIE World Animal Health Information System (WAHIS), Regional Roadmap Meetings, and countries' responses to PPR Monitoring and Assessment Tool (PMAT) questionnaires were analyzed to inform on current progress towards PPR eradication. OIE recorded the use of over 333 million doses of vaccine in 12 countries from 2015 to 2018, 41.8% of which were used in Asia and 58.2% in Africa. Between 2015 and 2019, a total of 12,757 PPR outbreaks were reported to OIE: 75.1% in Asia, 24.8% in Africa, and 0.1% in Europe. The number of global outbreaks in 2019 fell to 1218, compared with 3688 in 2015. Analysis of vaccine use and PPR outbreaks in countries indicates that disease control strategies, particularly vaccination campaigns and vaccine distribution strategies, still require scientific evaluation. It is imperative that vaccination is undertaken based on the epidemiology of the disease in a region and is coordinated between neighboring countries to restrict transboundary movements. Strengthening surveillance and post-vaccination sero-monitoring at the national level is also essential. The PPR vaccine stock/bank established by FAO, OIE, and other partners have improved the quality assurance and supply of vaccines. However, to achieve PPR eradication, filling the funding gap for vaccination campaigns and other program activities will be critical.
Collapse
Affiliation(s)
- Hang Zhao
- Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Felix Njeumi
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
| | - Satya Parida
- The Pirbright Institute, Woking GU24 0NF, UK
- Correspondence: (S.P.); (C.T.O.B.)
| | - Camilla T. O. Benfield
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
- Royal Veterinary College, University of London, London NW1 0TU, UK
- Correspondence: (S.P.); (C.T.O.B.)
| |
Collapse
|
5
|
Jia XX, Wang H, Liu Y, Meng DM, Fan ZC. Development of vaccines for prevention of peste-des-petits-ruminants virus infection. Microb Pathog 2020; 142:104045. [PMID: 32035105 DOI: 10.1016/j.micpath.2020.104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 01/22/2023]
Abstract
Peste des petits ruminants (PPR) is a highly contagious and fatal disease of small ruminants, particularly sheep and goats. This disease leads to high morbidity and mortality of small ruminants, thus resulting in devastating economic loss to the livestock industry globally. The severe disease impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organization for Animal Health (OIE) to develop a global strategy for the control and eradication of PPR by 2030. Over the past decades, the control of PPR is mainly achieved through vaccinating the animals with live-attenuated vaccines, e.g., rinderpest vaccines. As a closely related disease to PPR of large ruminants, rinderpest was eradicated in 2011 and its vaccines subsequently got banned in order to keep rinderpest-free zones. Consequently, it is desirable to develop homologous PPR vaccines to control the disease. The present review summarizes the objectives of PPR control and eradication by focusing on the homologous PPR vaccines.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - De-Mei Meng
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Mantip SE, Shamaki D, Farougou S. Peste des petits ruminants in Africa: Meta-analysis of the virus isolation in molecular epidemiology studies. Onderstepoort J Vet Res 2019; 86:e1-e15. [PMID: 31038322 PMCID: PMC6556936 DOI: 10.4102/ojvr.v86i1.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
Peste des petits ruminant (PPR) is a highly contagious, infectious viral disease of small ruminant species which is caused by the peste des petits ruminants virus (PPRV), the prototype member of the Morbillivirus genus in the Paramyxoviridae family. Peste des petits ruminant was first described in West Africa, where it has probably been endemic in sheep and goats since the emergence of the rinderpest pandemic and was always misdiagnosed with rinderpest in sheep and goats. Since its discovery PPR has had a major impact on sheep and goat breeders in Africa and has therefore been a key focus of research at the veterinary research institutes and university faculties of veterinary medicine in Africa. Several key discoveries were made at these institutions, including the isolation and propagation of African PPR virus isolates, notable amongst which was the Nigerian PPRV 75/1 that was used in the scientific study to understand the taxonomy, molecular dynamics, lineage differentiation of PPRV and the development of vaccine seeds for immunisation against PPR. African sheep and goat breeds including camels and wild ruminants are frequently infected, manifesting clinical signs of the disease, whereas cattle and pigs are asymptomatic but can seroconvert for PPR. The immunisation of susceptible sheep and goats remains the most effective and practical control measure against PPR. To carry out PPR vaccination in tropical African countries with a very high temperature, a thermostable vaccine using the rinderpest lyophilisation method to the attenuated Nigeria 75/1 PPR vaccine strain has been developed, which will greatly facilitate the delivery of vaccination in the control, prevention and global eradication of PPR. Apart from vaccination, other important questions that will contribute towards the control and prevention of PPR need to be answered, for example, to identify the period when a susceptible naïve animal becomes infectious when in contact with an infected animal and when an infectious animal becomes contagious.
Collapse
Affiliation(s)
- Samuel E Mantip
- Department of Animal Health and Production, University of Abomey-Calavi, Abomey Calavi, Benin; and, Viral Research Division, National Veterinary Research Institute, Vom, Nigeria.
| | | | | |
Collapse
|
7
|
An overview of process intensification and thermo stabilization for upscaling of Peste des petits ruminants vaccines in view of global control and eradication. Virusdisease 2018; 29:285-296. [PMID: 30159362 DOI: 10.1007/s13337-018-0455-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
Peste des petits ruminants (PPR) has been recognized as a globally distributed disease affecting the small ruminant population. The disease results in severe economic losses mainly to small land holders and low input farming systems. The control of PPR is mainly achieved through vaccination with available live attenuated vaccines. The thermo labile nature of PPR virus poses a major constraint in production of quality vaccines which often results in vaccine failures. The lack of quality vaccine production jeopardize the wide vaccination coverage especially in countries with poor infrastructure due to which PPR persists endemically. The vaccine production system may require augmentation to attain consistent and quality vaccines through efforts of process intensification integrated with suitable stabilizer formulations with appropriate freeze drying cycles for improved thermo tolerance. Manufacturing of live attenuated PPR vaccines during batch cultures might introduce defective interfering particles (DIPs) as a result of high multiplicity of infection (MOI) of inoculums, which has a huge impact on virus dynamics and yield. Accumulation of DIPs adversely affects the quality of the manufactured vaccines which can be avoided through use of appropriate MOI of virus inoculums and quality control of working seed viruses. Therefore, adherence to critical manufacturing standard operating procedures in vaccine production and ongoing efforts on development of thermo tolerant vaccine will help a long way in PPR control and eradication programme globally. The present review focuses on the way forward to achieve the objectives of quality vaccine production and easy upscaling to help the global PPR control and eradication by mass vaccination as an important tool.
Collapse
|
8
|
A thermostable presentation of the live, attenuated peste des petits ruminants vaccine in use in Africa and Asia. Vaccine 2017; 35:3773-3779. [DOI: 10.1016/j.vaccine.2017.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 11/20/2022]
|
9
|
Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Vet Microbiol 2017; 206:91-101. [PMID: 28161212 PMCID: PMC7130925 DOI: 10.1016/j.vetmic.2017.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that leads to high morbidity and mortality thereby results in devastating economic consequences to the livestock industry. PPR is currently endemic across most parts of Asia and Africa, the two regions with the highest concentration of poor people in the world. Sheep and goats in particularly contribute significantly towards the upliftment of livelihood of the poor and marginal farmers in these regions. In this context, PPR directly affecting the viability of sheep and goat husbandry has emerged as a major hurdle in the development of these regions. The control of PPR in these regions could significantly contribute to poverty alleviation, therefore, the Office International des Epizooties (OIE) and Food and Agricultural Organization (FAO) have targeted the control and eradication of PPR by 2030 a priority. In order to achieve this goal, a potent, safe and efficacious live-attenuated PPR vaccine with long-lasting immunity is available for immunoprophylaxis. However, the live-attenuated PPR vaccine is thermolabile and needs maintenance of an effective cold chain to deliver into the field. In addition, the infected animals cannot be differentiated from vaccinated animals. To overcome these limitations, some recombinant vaccines have been developed. This review comprehensively describes about the latest developments in PPR vaccines.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
10
|
Dik B, Dik I, Bahcivan E, Avci O. Corynebacterium cutis Lysate Treatment Can Increase the Efficacies of PPR Vaccine. J Interferon Cytokine Res 2016; 36:599-606. [PMID: 27533481 DOI: 10.1089/jir.2016.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of Peste des petits ruminants (PPR) vaccine on cytokine and antibody levels in sheep when administered alone or in combination with Corynebacterium cutis lysate (CCL). The PPR vaccine group received a single subcutaneous axillary injection of the PPR vaccine (1 mL containing tissue culture infectious dose (TCID)50 attenuated live PPRV, n = 6) and the combination treatment (1 mL CCL and 1 mL PPR vaccine, n = 6) groups received a single subcutaneous axillary injection of both CCL and PPR vaccine. Blood samples were collected from sheep before the treatment and at different points after treatment (1, 3, 7, 14, 21, and 28 days). Plasma and serum samples were evaluated for antibody percentage, levels of cytokines IL-6, IL-10, IFN-γ, IL-4, IL-12, and IL-18, oxidative stress marker Thiobarbituric acid reactive substances, and hematological and biochemical parameters. Maximum protective antibody levels reach 3-4 weeks after vaccine administration. The combination treatment resulted in significant changes in IFN-γ, IL-4, IL-12, and IL-18 cytokine levels. These changes were not evident when only the PPR vaccine was administered and antibody percentage against PPRV was short term in PPR vaccine group. In conclusion, combined usage of the PPR vaccine with CCL resulted in a heightened cytokine response, leading to improved antibody level against PPR virus. Repeated CCL treatments can lead to earlier vaccine potency, provide protective efficacy for a longer time, and increase passive immunity.
Collapse
Affiliation(s)
- Burak Dik
- 1 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Irmak Dik
- 2 Department of Virology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Emre Bahcivan
- 1 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Oguzhan Avci
- 2 Department of Virology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| |
Collapse
|
11
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|
12
|
Pastorino B, Baronti C, Gould EA, Charrel RN, de Lamballerie X. Effect of chemical stabilizers on the thermostability and infectivity of a representative panel of freeze dried viruses. PLoS One 2015; 10:e0118963. [PMID: 25923434 PMCID: PMC4414529 DOI: 10.1371/journal.pone.0118963] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022] Open
Abstract
As a partner of the European Virus Archive (EVA) FP7 project, our laboratory maintains a large collection of freeze-dried viruses. The distribution of these viruses to academic researchers, public health organizations and industry is one major aim of the EVA consortium. It is known that lyophilization requires appropriate stabilizers to prevent inactivation of the virus. However, few studies have investigated the influence of different stabilizers and lyophilization protocols on the thermostability of different viruses. In order to identify optimal lyophilization conditions that will deliver maximum retention of viral infectivity titre, different stabilizer formulations containing trehalose, sorbitol, sucrose or foetal bovine serum were evaluated for their efficacy in stabilizing a representative panel of freeze dried viruses at different storage temperatures (-20°C, +4°C and +20°C) for one week, the two latter mimicking suboptimal shipping conditions. The Tissue Culture Infectious Dose 50% (TCID50) assay was used to compare the titres of infectious virus. The results obtained using four relevant and model viruses (enveloped/non enveloped RNA/DNA viruses) still serve to improve the freeze drying conditions needed for the development and the distribution of a large virus collection.
Collapse
Affiliation(s)
- Boris Pastorino
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", & IHU Institute hospitalo-universitaire Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| | - Cecile Baronti
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", & IHU Institute hospitalo-universitaire Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", & IHU Institute hospitalo-universitaire Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", & IHU Institute hospitalo-universitaire Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", & IHU Institute hospitalo-universitaire Méditerranée Infection, APHM Public Hospitals of Marseille 13385, Marseille, France
| |
Collapse
|
13
|
|
14
|
Liu F, Wu X, Liu W, Li L, Wang Z. Current perspectives on conventional and novel vaccines against peste des petits ruminants. Vet Res Commun 2014; 38:307-22. [DOI: 10.1007/s11259-014-9618-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
|