1
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
2
|
Vaccinating Meat Chickens against Campylobacter and Salmonella: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10111936. [PMID: 36423031 PMCID: PMC9692956 DOI: 10.3390/vaccines10111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Foodborne enteritis is a major disease burden globally. Two of the most common causative bacterial enteropathogens in humans are Campylobacter and Salmonella species which are strongly associated with the consumption of raw or contaminated chicken. The poultry industry has approached this issue by use of a multi-hurdle method across the production chain to reduce or eliminate this risk. The use of poultry vaccines is one of these control methods. A systematic review and meta-analysis of vaccination effects against caecal Campylobacter and Salmonella were performed on primary research published between 2009 and 2022. Screening was conducted by three reviewers with one reviewer performing subsequent data extraction and one reviewer performing the risk of bias assessment. The confidence in cumulative evidence was evaluated based on the GRADE method. Meta-analyses were performed using standardised mean differences (SMDs) with additional analyses and random effects regression models on intervention effects grouped by the vaccine type. A total of 13 Campylobacter and 19 Salmonella studies satisfied the eligibility criteria for this review. Many studies included multi-arm interventions, resulting in a total of 25 Campylobacter and 34 Salmonella comparators which were synthesised. The analyses revealed a large reduction in pathogen levels; however, many effects required statistical adjustment due to unit of analysis errors. There was a moderate level of confidence in the reduction of Campylobacter by 0.93 SMD units (95% CI: −1.275 to −0.585; p value < 0.001) and a very low level of confidence in the reduction of Salmonella by 1.10 SMD units (95% CI: −1.419 to −0.776; p value < 0.001). The Chi2 test for heterogeneity (p value 0.001 and <0.001 for Campylobacter and Salmonella, respectively) and the I2 statistic (52.4% and 77.5% for Campylobacter and Salmonella, respectively) indicated high levels of heterogeneity in the SMDs across the comparators. The certainty of gathered evidence was also affected by a high risk of study bias mostly due to a lack of detailed reporting and, additionally for Salmonella, the presence of publication bias. Further research is recommended to source areas of heterogeneity, and a conscious effort to follow reporting guidelines and consider units of analysis can improve the strength of evidence gathered to provide recommendations to the industry.
Collapse
|
3
|
Li Q, Ren J, Xian H, Yin C, Yuan Y, Li Y, Ji R, Chu C, Qiao Z, Jiao X. rOmpF and OMVs as efficient subunit vaccines against Salmonella enterica serovar Enteritidis infections in poultry farms. Vaccine 2020; 38:7094-7099. [PMID: 32951940 DOI: 10.1016/j.vaccine.2020.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis remains the most prevalent serotype causing human salmonellosis through the consumption of contaminated foods, especially poultry products. The development of a subunit vaccine against S. Enteritidis can not only protect chickens against Salmonella infection in the poultry industry but also cut the transmission sources. In this study, both the expressed recombinant outer membrane protein F (rOmpF) and extracted outer membrane vesicles (OMVs) were developed as subunit vaccines against S. Enteritidis challenge in chickens. Immunization with the subunit vaccine could induce not only antibody production but also strong cell-mediated immune response. Both rOmpF plus QuilA adjuvant and OMVs alone had highly protective efficacy against S. Enteritidis challenge and rapidly decreased the colonization of bacteria in chicken. These findings revealed the potential application of rOmpF and OMVs as subunit vaccines in the poultry industry.
Collapse
Affiliation(s)
- Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Jingwei Ren
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Honghong Xian
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Chao Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yu Yuan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Ruoyun Ji
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Chao Chu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Zhuang Qiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
4
|
Kilroy S, Raspoet R, Haesebrouck F, Ducatelle R, Van Immerseel F. Prevention of egg contamination by Salmonella Enteritidis after oral vaccination of laying hens with Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC mutants. Vet Res 2016; 47:82. [PMID: 27519174 PMCID: PMC4982998 DOI: 10.1186/s13567-016-0369-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Vaccination of laying hens has been successfully used to reduce egg contamination by Salmonella Enteritidis, decreasing human salmonellosis cases worldwide. Currently used vaccines for layers are either inactivated vaccines or live attenuated strains produced by mutagenesis. Targeted gene deletion mutants hold promise for future vaccines, because specific bacterial functions can be removed that may improve safety and allow differentiation from field strains. In this study, the efficacy of Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains in laying hens as live vaccines was evaluated. The mutants are deficient in either the membrane channel TolC (ΔtolC) or the multi-drug efflux systems acrAB, acrEF and mdtABC (ΔacrABacrEFmdtABC). These strains have a decreased ability for gut and tissue colonization and are unable to survive in egg white, the latter preventing transmission of the vaccine strains to humans. Two groups of 30 laying hens were orally inoculated at day 1, 6 weeks and 16 weeks of age with 108 cfu of either vaccine strain, while a third group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 5 × 107 cfu Salmonella Enteritidis PT4 S1400/94. The vaccine strains were not shed or detected in the gut, internal organs or eggs, 2 weeks after the third vaccination. The strains significantly protected against gut and internal organ colonization, and completely prevented egg contamination by Salmonella Enteritidis under the conditions of this study. This indicates that Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains might be valuable strains for vaccination of layers against Salmonella Enteritidis.
Collapse
Affiliation(s)
- Sofie Kilroy
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Ruth Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|