1
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
2
|
Mezhenskaya D, Isakova-Sivak I, Kotomina T, Matyushenko V, Kim MC, Bhatnagar N, Kim KH, Kang SM, Rudenko L. A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats. Biomedicines 2021; 9:biomedicines9020133. [PMID: 33535408 PMCID: PMC7912525 DOI: 10.3390/biomedicines9020133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses remain a serious public health problem. Vaccination is the most effective way to prevent the disease; however, seasonal influenza vaccines demonstrate low or no effectiveness against antigenically drifted and newly emerged influenza viruses. Different strategies of eliciting immune responses against conserved parts of various influenza virus proteins are being developed worldwide. We constructed a universal live attenuated influenza vaccine (LAIV) candidate with enhanced breadth of protection by modifying H7N9 LAIV by incorporating four epitopes of M2 protein extracellular part into its hemagglutinin molecule. The new recombinant H7N9+4M2e vaccine induced anti-M2e antibody responses and demonstrated increased protection against heterosubtypic challenge viruses in direct and serum passive protection studies, compared to the classical H7N9 LAIV. The results of our study suggest that the H7N9+4M2e warrants further investigation in pre-clinical and phase 1 clinical trials.
Collapse
Affiliation(s)
- Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
- Correspondence:
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (M.-C.K.); (N.B.); (K.-H.K.); (S.-M.K.)
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (D.M.); (T.K.); (V.M.); (L.R.)
| |
Collapse
|
3
|
Roy S, Williams CM, Wijesundara DK, Furuya Y. Impact of Pre-Existing Immunity to Influenza on Live-Attenuated Influenza Vaccine (LAIV) Immunogenicity. Vaccines (Basel) 2020; 8:E683. [PMID: 33207559 PMCID: PMC7711626 DOI: 10.3390/vaccines8040683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
During the previous influenza seasons, between 2010 and 2016, the live attenuated influenza vaccine (LAIV) provided variable efficacy against influenza in the U.S., causing the recommendation against the use of the LAIV. In striking contrast, pre-clinical studies have repeatedly demonstrated superior efficacy of LAIV against mismatched influenza viruses, compared to inactivated influenza vaccines (IIV). This disparity in reported vaccine efficacies between pre-clinical and clinical studies may in part be explained by limitations of the animal models of influenza. In particular, the absence of pre-existing immunity in animal models has recently emerged as a potential explanation for the discrepancies between preclinical findings and human studies. This commentary focuses on the potential impact of pre-existing immunity on LAIV induced immunogenicity with an emphasis on cross-protective immunity.
Collapse
Affiliation(s)
- Sreeja Roy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| | - Clare M. Williams
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| | - Danushka K. Wijesundara
- The School of Chemistry and Molecular Biosciences, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia;
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.R.); (C.M.W.)
| |
Collapse
|
4
|
Immunogenicity and efficacy comparison of MDCK cell-based and egg-based live attenuated influenza vaccines of H5 and H7 subtypes in ferrets. Vaccine 2020; 38:6280-6290. [PMID: 32741671 DOI: 10.1016/j.vaccine.2020.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
During a pandemic, the availability of specific pathogen free chicken eggs is a major bottleneck for up-scaling response to the demand for influenza vaccine. This has led us to explore the use of Madin-Darby Canine Kidney (MDCK) cells for the manufacture of live attenuated influenza vaccine (LAIV) that provides production flexibility and speed. The present study reports the comparison of the immunogenicity and efficacy of two MDCK-based LAIVs against two egg-based LAIVs prepared from the same pandemic potential strains of H5 and H7 subtypes after a single dose of the vaccine followed by a challenge with a homologous wild type strain. The vaccine strains have been generated by classical method of reassortment using the A/Leningrad/134/17/57 master donor strain. Additionally, a prime-boost regimen of the MDCK-based vaccine followed by a challenge with a homologous wild type strain for H5 and H7 immunized ferrets and also a heterologous wild type strain for the H5 immunized animals was studied. No difference in the hemagglutination inhibition and virus neutralization antibody titers against the homologous virus was observed following a single dose of either egg-based or MDCK-based H5 and H7 LAIV vaccine. A second dose of MDCK-based vaccine significantly boosted antibody titers in the vaccinated animals. Both a single dose or two doses of LAIV provided complete protection from lower respiratory tract infection and resulted in a significant reduction in the virus titers recovered from the throat, nasal turbinates and lungs after challenge with the homologous wild type strain. Protection from a challenge with a heterologous strain of H5 was also observed after two doses of the MDCK-based LAIVs. This data strongly supports the use of MDCK as a substrate for the manufacture of LAIV which ensures reliable quality, safety, production flexibility, speed and breadth of protection, features that are highly critical during a pandemic.
Collapse
|
5
|
Fadlallah GM, Ma F, Zhang Z, Hao M, Hu J, Li M, Liu H, Liang B, Yao Y, Gong R, Zhang B, Liu D, Chen J. Vaccination with Consensus H7 Elicits Broadly Reactive and Protective Antibodies against Eurasian and North American Lineage H7 Viruses. Vaccines (Basel) 2020; 8:E143. [PMID: 32210092 PMCID: PMC7157604 DOI: 10.3390/vaccines8010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
H7 subtype avian influenza viruses have caused outbreaks in poultry, and even human infection, for decades in both Eurasia and North America. Although effective vaccines offer the best protection against avian influenza viruses, antigenically distinct Eurasian and North American lineage subtype H7 viruses require the development of cross-protective vaccine candidates. In this study, a methodology called computationally optimized broadly reactive antigen (COBRA) was used to develop four consensus H7 antigens (CH7-22, CH7-24, CH7-26, and CH7-28). In vitro experiments confirmed the binding of monoclonal antibodies to the head and stem domains of cell surface-expressed consensus HAs, indicating display of their antigenicity. Immunization with DNA vaccines encoding the four antigens was evaluated in a mouse model. Broadly reactive antibodies against H7 viruses from Eurasian and North American lineages were elicited and detected by binding, inhibition, and neutralizing analyses. Further infection with Eurasian H7N9 and North American H7N3 virus strains confirmed that CH7-22 and CH7-24 conferred the most effective protection against hetero-lethal challenge. Our data showed that the consensus H7 vaccines elicit a broadly reactive, protective response against Eurasian and North American lineage H7 viruses, which are suitable for development against other zoonotic influenza viruses.
Collapse
Affiliation(s)
- Gendeal M. Fadlallah
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Zherui Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biling Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yanfeng Yao
- National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
6
|
Isakova-Sivak I, Matyushenko V, Kotomina T, Kiseleva I, Krutikova E, Donina S, Rekstin A, Larionova N, Mezhenskaya D, Sivak K, Muzhikyan A, Katelnikova A, Rudenko L. Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines (Basel) 2019; 7:vaccines7030061. [PMID: 31288422 PMCID: PMC6789596 DOI: 10.3390/vaccines7030061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The development of universal influenza vaccines has been a priority for more than 20 years. We conducted a preclinical study in ferrets of two sets of live attenuated influenza vaccines (LAIVs) expressing chimeric hemagglutinin (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but had antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. The viral nucleoproteins (NPs) in the two sets of universal LAIV candidates were from different sources: one LAIV set contained NP from A/Leningrad/17 master donor virus (MDV), while in the other set this gene was from wild-type (WT) H1N1pdm09 virus, in order to better match the CD8 T-cell epitopes of currently circulating influenza A viruses. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Naïve ferrets were sequentially immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). All vaccination regimens were safe, producing no significant increase in body temperature or weight loss, in comparison with the placebo group. The two groups of cHA-based vaccines induced a broadly reactive HA stalk-directed antibody, while classical LAIVs did not. A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) > cHA LAIVs (NP-MDV) > LAIVs (NP-MDV). This ferret study showed that prototype universal cHA-based LAIVs are highly promising candidates for further clinical development.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Natalia Larionova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Konstantin Sivak
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Arman Muzhikyan
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., St Petersburg 188663, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| |
Collapse
|
7
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
8
|
Hasan M, Ghosh PP, Azim KF, Mukta S, Abir RA, Nahar J, Hasan Khan MM. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb Pathog 2019; 130:19-37. [PMID: 30822457 DOI: 10.1016/j.micpath.2019.02.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022]
Abstract
H7N9, a novel strain of avian origin influenza was the first recorded incidence where a human was transited by a N9 type influenza virus. Effective vaccination against influenza A (H7N9) is a major concern, since it has emerged as a life threatening viral pathogen. Here, an in silico reverse vaccinology strategy was adopted to design a unique chimeric subunit vaccine against avian influenza A (H7N9). Induction of humoral and cell-mediated immunity is the prime concerned characteristics for a peptide vaccine candidate, hence both T cell and B cell immunity of viral proteins were screened. Antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach were adopted to generate the most antigenic epitopes of avian influenza A (H7N9) proteome. Further, a novel subunit vaccine was designed by the combination of highly immunogenic epitopes along with suitable adjuvant and linkers. Physicochemical properties and secondary structure of the designed vaccine were assessed to ensure its thermostability, h ydrophilicity, theoretical PI and structural behavior. Homology modeling, refinement and validation of the designed vaccine allowed to construct a three dimensional structure of the predicted vaccine, further employed to molecular docking analysis with different MHC molecules and human immune TLR8 receptor present on lymphocyte cells. Moreover, disulfide engineering was employed to lessen the high mobility region of the designed vaccine in order to extend its stability. Furthermore, we investigated the molecular dynamic simulation of the modeled subunit vaccine and TLR8 complexed molecule to strengthen our prediction. Finally, the suggested vaccine was reverse transcribed and adapted for E. coli strain K12 prior to insertion within pET28a(+) vector for checking translational potency and microbial expression.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Progga Paromita Ghosh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shamsunnahar Mukta
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ruhshan Ahmed Abir
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jannatun Nahar
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Mehedi Hasan Khan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
9
|
Liu H, Xiong C, Chen J, Chen G, Zhang J, Li Y, Xiong Y, Wang R, Cao Y, Chen Q, Liu D, Wang H, Chen J. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China. Emerg Microbes Infect 2018; 7:62. [PMID: 29636458 PMCID: PMC5893581 DOI: 10.1038/s41426-018-0064-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/03/2022]
Abstract
After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.
Collapse
Affiliation(s)
- Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yanping Xiong
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 101409, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J 2018; 15:17. [PMID: 29370862 PMCID: PMC5785881 DOI: 10.1186/s12985-017-0918-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5–30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current vaccine and circulating influenza isolates, vaccinated people may not be afforded complete protection. There is currently an unmet need to develop an effective “broadly-reactive” or “universal” influenza vaccine capable of conferring protection against both seasonal and newly emerging pre-pandemic strains. A number of novel influenza vaccine approaches are currently under evaluation. One approach is the elicitation of an immune response against the “Achille’s heel” of the virus, i.e. conserved viral proteins or protein regions shared amongst seasonal and pre-pandemic strains. Alternatively, other approaches aim toward eliciting a broader immune response capable of conferring protection against the diversity of currently circulating seasonal influenza strains. In this review, the most promising under-development universal vaccine approaches are discussed with an emphasis on those targeting the HA glycoprotein. In particular, their strengths and potential short-comings are discussed. Ultimately, the upcoming clinical evaluation of these universal vaccine approaches will be fundamental to determine their effectiveness against preventing influenza virus infection and/or reducing transmission and disease severity.
Collapse
Affiliation(s)
- Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Greg A Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Allen JD, Owino SO, Carter DM, Crevar CJ, Reese VA, Fox CB, Coler RN, Reed SG, Baldwin SL, Ross TM. Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine 2017; 35:5209-5216. [PMID: 28789850 DOI: 10.1016/j.vaccine.2017.07.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
A number of challenges for developing a protective pre-pandemic influenza A vaccine exists including predicting the target influenza strain and designing the vaccine for an immunologically naïve population. Manufacturing and supply of the vaccine would also require implementing ways to increase coverage for the largest number of people through dose-sparing methods, while not compromising the potency of the vaccine. Previously, our group described a novel hemagglutinin (HA) for H5N1 influenza derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This report describes a strategy combining a COBRA-based HA vaccine with an oil-in-water emulsion, resulting in a dose-sparing, immunologically broadened, and protective response against multiple H5N1 isolates. Here, we show that an emulsion-based adjuvant enhances the magnitude and breadth of antibody responses with both a wild-type H5HA (H5N1 WT) and the H5N1 COBRA HA VLP vaccines. The H5N1 COBRA HA VLP, combined with an emulsion adjuvant, elicited HAI specific antibodies against a larger panel of H5N1 viruses that resulted in protection against challenge as efficiently as the homologous, matched vaccine.
Collapse
Affiliation(s)
- James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Donald M Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Isakova-Sivak I, Rudenko L. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28532182 DOI: 10.1080/14760584.2017.1333907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term 'H7N9 influenza vaccine'. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO's GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
13
|
Rudenko L, Yeolekar L, Kiseleva I, Isakova-Sivak I. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories. Vaccine 2016; 34:5436-5441. [PMID: 27593158 PMCID: PMC5357706 DOI: 10.1016/j.vaccine.2016.08.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 11/27/2022]
Abstract
Influenza is a viral infection that affects much of the global population each year. Vaccination remains the most effective tool for preventing the disease. Live attenuated influenza vaccine (LAIV) has been used since the 1950s to protect humans against seasonal influenza. LAIVs developed by the Institute of Experimental Medicine (IEM), Saint Petersburg, Russia, have been successfully used in Russia since 1987. In 2006, the World Health Organization (WHO) announced a Global action plan for influenza vaccines (GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a pandemic situation, included LAIV in the GAP. BioDiem Ltd., a vaccine development company based in Melbourne, Australia which held the rights for the Russian LAIV, licensed this technology to WHO in 2009. WHO was permitted to grant sub-licenses to vaccine manufacturers in newly industrialized and developing countries to use the Russian LAIV for the development, manufacture, use and sale of pandemic and seasonal LAIVs. To date, WHO has granted sub-licenses to vaccine manufacturers in China (Changchun BCHT Biotechnology Co., Ltd.), India (Serum Institute of India Pvt. Ltd.) and Thailand (Government Pharmaceutical Organization). In parallel, in 2009, IEM signed an agreement with WHO, under which IEM committed to supply pandemic and seasonal candidate vaccine viruses to the sub-licensees. This paper describes the progress made by collaborators from China, India, Russia and Thailand in developing preventive measures, including LAIV against pandemic influenza.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg 197376, Russia.
| | - Leena Yeolekar
- Vaccine Production, Serum Institute of India, 212/2 Hadapsar, Pune, India.
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg 197376, Russia.
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg 197376, Russia.
| |
Collapse
|
14
|
Rudenko L, Isakova-Sivak I, Naykhin A, Kiseleva I, Stukova M, Erofeeva M, Korenkov D, Matyushenko V, Sparrow E, Kieny MP. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2015; 16:303-10. [PMID: 26673391 DOI: 10.1016/s1473-3099(15)00378-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND H7N9 avian influenza viruses characterised by high virulence and presence of mammalian adaptation markers have pandemic potential. Specific influenza vaccines remain the main defence. We assessed the safety and immunogenicity of an H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers. METHODS We did a phase 1, double-blind, randomised, placebo-controlled trial in Saint Petersburg, Russia. Eligible participants were healthy adults aged 18-49 years. The participants were randomised 3:1 to receive live vaccine or placebo, according to a computer-generated randomisation scheme. Two doses of vaccine or placebo were administered intranasally 28 days apart, each followed by 7 day stays in hospital. Immune responses were assessed in nasal swabs, saliva, and serum specimens collected before and 28 days after each vaccine dose. The primary outcome was the safety profile. This trial is registered with ClinicalTrials.gov, number NCT02480101. FINDINGS Between Oct 21, 2014, and Oct 31, 2014, 40 adults were randomised, of whom 39 (98%) were included in the per-protocol analysis (29 in the vaccine group and ten in the placebo group). The frequency of adverse events did not differ between the vaccine and placebo groups. Seroconversion of neutralising antibodies was seen in 14 participants after the first vaccine dose (48%, 95% CI 29·4-67·5) and 21 after the second vaccine dose (72%, 52·8-87·3). Immune responses were seen in 27 of 29 recipients (93%, 95% CI 77·2-99·2). Adverse effects were seen in 19 (63%) vaccine recipients and nine (90%) placebo recipients after the first dose and in nine (31%) and four (40%), respectively, after the second dose. These effects were mainly local and all were mild. INTERPRETATION The H7N9 LAIV was well tolerated and safe and showed good immunogenicity. FUNDING WHO.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| | - Anatoly Naykhin
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Stukova
- Department of Molecular Virology, Research Institute of Influenza, Saint Petersburg, Russia
| | - Mariana Erofeeva
- Department of Epidemiology and Prophylaxis, Research Institute of Influenza, Saint Petersburg, Russia
| | - Daniil Korenkov
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Erin Sparrow
- Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- Department of Health Systems and Innovation, World Health Organization, Geneva, Switzerland
| |
Collapse
|
15
|
Czako R, Subbarao K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol 2015; 10:1033-1047. [PMID: 26587050 DOI: 10.2217/fvl.15.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration.
Collapse
Affiliation(s)
- Rita Czako
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Song L, Xiong D, Kang X, Yang Y, Wang J, Guo Y, Xu H, Chen S, Peng D, Pan Z, Jiao X. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin. BMC Biotechnol 2015; 15:79. [PMID: 26286143 PMCID: PMC4544785 DOI: 10.1186/s12896-015-0195-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Background A novel influenza virus, subtype H7N9, circulated through China in 2013–2014. Its higher rates of human infection in a wide range of locations within China and the associated increased likelihood of human-to-human transmission have caused global concern. Recombinant subunit vaccines provide safe and targeted protection against viral infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than vaccines made from whole viruses. Studies have shown that bacterial flagellin has strong adjuvant activity and induces protective immune responses. Results In this study, we used overlap-PCR to generate an H7N9 influenza recombinant subunit vaccine that fused the globular head domain (HA1-2, aa 62–284) of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, Salmonella typhimurium flagellin (fliC). The resulting fusion protein, HA1-2-fliC, was efficiently expressed in an Escherichia coli prokaryotic expression system, and Western blotting and TLR5-stimulating activity analysis confirmed that the HA1-2-fliC moiety could be faithfully refolded to take on the native HA and fliC conformations. In a C3H/HeJ mouse model of intraperitoneal vaccination, the fusion protein elicited significant and robust HA1-2-specific serum IgG titers, maintaining high levels for at least 3 months in the vaccinated animals, and induced similar levels of HA1-2-specific IgG1 and IgG2a that were detectable 12 days after the third immunization. HA1-2-fliC was also found to be capable of triggering the production of neutralizing antibodies, as assessed by measuring hemagglutination inhibition titers. Conclusions We conclude that immunization with HA1-2-fliC induces potent HA1-2-specific responses, offering significant promise for the development of a successful recombinant subunit vaccine for avian influenza A (H7N9).
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yun Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jing Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Hui Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|