1
|
Wang H, Dan Y, Li L, Wang X. Advances in Chicken Infectious Anemia Vaccines. Vaccines (Basel) 2025; 13:277. [PMID: 40266153 PMCID: PMC11945756 DOI: 10.3390/vaccines13030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/24/2025] Open
Abstract
Chicken infectious anemia (CIA) is caused by the CIA virus (CIAV) and is a globally distributed immunosuppressive disease, resulting in substantial economic losses for the poultry industry. Vaccination is the most cost-effective and efficient strategy for preventing and controlling infectious diseases. The most common CIA vaccines used internationally are attenuated vaccines. Although inactivated vaccines, subunit vaccines, immune complex vaccines, recombinant live viral vector vaccines, and DNA vaccines used for preventing CIAV infection have been developed and exhibited relatively satisfactory immune responses, they have not yet achieved large-scale market applications. Therefore, accelerating the introduction of safe and effective CIA vaccines to the market and developing novel vaccines are crucial for the control of CIA in the poultry industry. This article reviews the etiological characteristics of CIAV, the epidemic features, and the research progress of CIA vaccines, and proposes future research directions, with the aim of providing innovative ideas and scientific references for the research and development of new, safe, and efficient CIA vaccines.
Collapse
Affiliation(s)
| | | | | | - Xinwei Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China; (H.W.); (Y.D.); (L.L.)
| |
Collapse
|
2
|
Li K, Liu Y, Liu C, Zhang Y, Cui H, Qi X, Zhang J, Xu J, Wang S, Chen Y, Duan Y, Gao Y, Wang X. Construction of Recombinant Marek's Disease Virus Co-Expressing VP1 and VP2 of Chicken Infectious Anemia Virus. Vaccines (Basel) 2024; 12:1047. [PMID: 39340077 PMCID: PMC11436033 DOI: 10.3390/vaccines12091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The chicken infectious anemia virus (CIAV) has been reported in major poultry-producing countries and poses a significant threat to the poultry industry worldwide. In this study, two Marek's disease virus (MDV) recombinants, rMDV-CIAV-1 and rMDV-CIAV-2, were generated by inserting the CIAV VP1 and VP2 genes into the MDV vaccine strain 814 at the US2 site using the fosmid-based rescue system. For rMDV-CIAV-1, an internal ribosome entry site was inserted between VP1 and VP2, so that both proteins were produced from a single open reading frame. In rMDV-CIAV-2, VP1 and VP2 were cloned into different open reading frames and inserted into the MDV genome. The recombinant viruses simultaneously expressed VP1 and VP2 in infected chicken embryo fibroblasts and exhibited growth kinetics similar to those of the parent MDV. The two recombinant viruses induced antibodies against CIAV in chickens. A single dose of the recombinant viruses provided strong protection against CIAV-induced anemia in chickens. These recombinant VP1- and VP2-expressing MDVs are potential vaccines against CIAV in chickens.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jiayong Zhang
- Heilongjiang Provincial Center for Animal Disease Prevention and Control, Harbin 150049, China
| | - Jia Xu
- Heilongjiang Provincial Center for Animal Disease Prevention and Control, Harbin 150049, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
3
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Angsujinda K, Peala W, Sittidech A, Wanganurakkul S, Mahony TJ, Wang SF, Smith DR, Chintapitaksakul L, Khongchareonporn N, Assavalapsakul W. Development of a lateral flow assay for rapid and accurate detection of chicken anemia virus. Poult Sci 2024; 103:103432. [PMID: 38232617 PMCID: PMC10827598 DOI: 10.1016/j.psj.2024.103432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Significant challenges to poultry health are posed by chicken anemia virus (CAV), which induces immunosuppression and causes increased susceptibility to secondary infections. The effective management and containment of CAV within poultry stocks require precise and prompt diagnosis. However, a deficiency persists in the availability of low-cost, rapid, and portable CAV detection devices. In this study, an immunochromatographic lateral-flow test strip-based assay was developed for CAV detection using in-house generated monoclonal antibodies (MABs) against CAV viral protein 1 (VP1). The recombinant truncated VP1 protein (Δ60VP1), with amino acid residues 1 to 60 of the native protein deleted, was produced via a prokaryotic expression system and utilized for immunizing BALB/c mice. Subsequently, high-affinity MABs against Δ60VP1 were generated and screened using conventional hybridoma technology combined with serial dilution assays. Two MABs, MAB1, and MAB3, both binding to distinct epitopes of Δ60VP1, were selected for the development of a lateral-flow assay. Sensitivity analysis demonstrated that the Δ60VP1 antigen could be detected by our homemade lateral-flow assay at concentrations as low as 625 ng/mL, and this sensitivity was maintained for at least 6 mo. The assay exhibited high specificity, as evidenced by its lack of reactivity with surrogate recombinant proteins and the absence of cross-reactivity with other chicken viruses and viral antigens. Comparative analysis with quantitative PCR data demonstrated substantial agreement, with a Kappa coefficient of 0.66, utilizing a sample set comprising 305 clinical chicken serum samples. In conclusion, the first lateral-flow assay for CAV detection was developed in this study, utilizing 2 specific anti-VP1 MABs. It is characterized by simplicity, rapidity, sensitivity, and specificity.
Collapse
Affiliation(s)
- Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisuttiya Peala
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akekarach Sittidech
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saruda Wanganurakkul
- Veterinary Research and Development Center (Eastern Region), Department of Livestock Development, Chonburi 20220, Thailand
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | | | - Nanthika Khongchareonporn
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Food and Water Risk Analysis, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Design of a Multiepitope Vaccine against Chicken Anemia Virus Disease. Viruses 2022; 14:v14071456. [PMID: 35891436 PMCID: PMC9318905 DOI: 10.3390/v14071456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chicken anemia virus (CAV) causes severe clinical and sub-clinical infection in poultry globally and thus leads to economic losses. The drawbacks of the commercially available vaccines against CAV disease signal the need for a novel, safe, and effective vaccine design. In this study, a multiepitope vaccine (MEV) consisting of T-cell and B-cell epitopes from CAV viral proteins (VP1 and VP2) was computationally constructed with the help of linkers and adjuvant. The 3D model of the MEV construct was refined and validated by different online bioinformatics tools. Molecular docking showed stable interaction of the MEV construct with TLR3, and this was confirmed by Molecular Dynamics Simulation. Codon optimization and in silico cloning of the vaccine in pET-28a (+) vector also showed its potential expression in the E. coli K12 system. The immune simulation also indicated the ability of this vaccine to induce an effective immune response against this virus. Although the vaccine in this study was computationally constructed and still requires further in vivo study to confirm its effectiveness, this study marks a very important step towards designing a potential vaccine against CAV disease.
Collapse
|
6
|
Rodrigues EE, Imperatori F, Back A, Kuana SL, Brehmer M. Rate of Transfer of Infectious Anaemia Maternal Antibodies from Broiler Breeders To the Progeny: a Field Evaluation. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - A Back
- MercoLab Laboratories, Brazil
| | | | | |
Collapse
|
7
|
Newcastle Disease Virus Vectored Chicken Infectious Anaemia Vaccine Induces Robust Immune Response in Chickens. Viruses 2021; 13:v13101985. [PMID: 34696415 PMCID: PMC8540149 DOI: 10.3390/v13101985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.
Collapse
|
8
|
Zhang X, Chen T, Chen S, Nie Y, Xie Z, Feng K, Zhang H, Xie Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol Sin 2021; 36:1431-1442. [PMID: 34251605 PMCID: PMC8273854 DOI: 10.1007/s12250-021-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global poultry industry. The distribution of TW I-type IBV in China has increased in recent years, becoming a widespread genotype. We previously isolated a TW I-type IBV strain termed CK/CH/GD/GZ14 in 2014, but its pathogenicity and possibility for vaccine development were not explored. Therefore, this research aimed to develop a live-attenuated virus vaccine based on the CK/CH/GD/GZ14 strain. The wild type IBV CK/CH/GD/GZ14 strain was serially passaged in SPF embryos for 145 generations. The morbidity and mortality rate of wild-type strain in 14 day-old chickens is 100% and 80% respectively, while the morbidity rate in the attenuated strain was 20% in the 95th and 105th generations and there was no death. Histopathological observations showed that the pathogenicity of the 95th and 105th generations in chickens was significantly weakened. Further challenge experiments confirmed that the attenuated CK/CH/GD/GZ14 strain in the 95th and 105th generations could resist CK/CH/GD/GZ14 (5th generation) infection and the protection rate was 80%. Tracheal cilia stagnation, virus shedding, and viral load experiments confirmed that the 95th and 105th generations provide good immune protection in chickens, and the immunogenicity of the 105th generation is better than that of the 95th generation. These data suggest that the attenuated CK/CH/GD/GZ14 strain in the 105th generation may be applied as a vaccine candidate against TW I-type IBV.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Tong Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Keyu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zhang X, Zhao Q, Wu C, Xie Z, Ci X, Li H, Lin W, Zhang H, Xie Q. Nitrate Is Crucial for the Proliferation of Gut Escherichia coli Caused by H9N2 AIV Infection and Effective Regulation by Chinese Herbal Medicine Ageratum-Liquid. Front Microbiol 2020; 11:555739. [PMID: 33193136 PMCID: PMC7662154 DOI: 10.3389/fmicb.2020.555739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
H9N2 avian influenza virus (AIV) infection in chickens is often accompanied by secondary bacterial infection, but the mechanism is unclear. The aim of the present study was to reveal that mechanism and explore non-antibiotic treatment. 16s rRNA sequencing and metabonomics were performed in the intestinal contents of chickens infected with H9N2 AIV or H9N2 AIV and fed with ageratum-liquid (AL) to reveal the metabolite that promote intestinal Escherichia coli (E. coli) proliferation caused by H9N2 AIV, as well as to determine the regulatory effect of AL. It was found that H9N2 AIV infection led E. coli to become the dominant gut microbe and promoted E. coli translocation from the intestinal tract to the visceral tissue through the damaged intestinal barrier. H9N2 AIV infection induces inflammation in the intestinal mucosa and promotes the secretion and release of nitrate from the host intestinal epithelium. In addition, nitrate promoted E. coli proliferation in the inflamed intestinal tract following H9N2 AIV infection. Furthermore, Chinese herbal medicine AL can restore intestinal homeostasis, inhibit the production of nitrate in the intestinal epithelium and effectively prevent the proliferation and translocation of E. coli in the intestines. This is the first report on the mechanism of E. coli secondary infection induced by H9N2 AIV, where herbal medicine AL was shown to have a good preventive effect on the secondary infection.
Collapse
Affiliation(s)
- Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qiqi Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Che Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Zi Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Xiaotong Ci
- College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
10
|
Preparation of Chicken Anemia Virus (CAV) Virus-Like Particles and Chicken Interleukin-12 for Vaccine Development Using a Baculovirus Expression System. Pathogens 2019; 8:pathogens8040262. [PMID: 31771230 PMCID: PMC6963176 DOI: 10.3390/pathogens8040262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023] Open
Abstract
Chicken infectious anemia (CIA) is a poultry disease that causes huge economic losses in the poultry industry worldwide. Commercially available CIA vaccines are derived from wild-type chicken anemia viruses (CAVs) by serial passage in cells or chicken embryos. However, these vaccinal viruses are not completely attenuated; therefore, they can be transmitted vertically and horizontally, and may induce clinical symptoms in young birds. In this study, we sought to eliminate these issues by developing a subunit vaccine exploiting the CAV structural proteins, engineering recombinant baculovirus-infected Spodoptera frugiperda (Sf9) cells that contained both the viral protein 1 (VP1) and VP2 of CAV. Moreover, we produced single-chain chicken interleukin-12 (chIL-12) in the same system, to serve as an adjuvant. The recombinant VP1 was recognized by chicken anti-CAV polyclonal antibodies in Western blotting and immunofluorescence assays, and the bioactivity of the recombinant chIL-12 was confirmed by stimulating interferon-γ (IFN-γ) secretion in chicken splenocytes. Furthermore, the ability of the recombinant VP1 to generate self-assembling virus-like particles (VLPs) was confirmed by transmission electron microscopy. Specific pathogen-free (SPF) chickens inoculated with VLPs and co-administered the recombinant chIL-12 induced high CAV-specific antibodies and cell-mediated immunity. Taken together, the VLPs produced by the baculovirus expression system have the potential to be a safe and effective CIA vaccine. Finally, we demonstrated the utility of recombinant chIL-12 as an adjuvant for poultry vaccine development.
Collapse
|
11
|
Krishan G, Shukla SK, Bhatt P, Kumar R, Tiwari R, Malik YS, Dhama K. Immunomodulatory and Protective Effects of a Polyherbal Formulation (Immon) Against Infectious Anemia Virus Infection in Broiler. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.470.476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|