1
|
Yang D, Huang L, Wang J, Wu H, Liu Z, Abudureyimu A, Qiao Z. Tumorigenesis mechanism and application strategy of the MDCK cell line: A systematic review. Biologicals 2023; 83:101699. [PMID: 37573790 DOI: 10.1016/j.biologicals.2023.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus that seriously endangers people's health. Influenza vaccination is the most effective means to prevent influenza virus infection and its serious complications. MDCK cells are considered to be superior to chicken embryos for the production of influenza vaccines, but the tumorigenicity of cells is a concern over the theoretical possibility of the risk of adverse events. The theoretical risks need to be adequately addressed if public confidence in programs of immunization are to be maintained. In this paper, studies of the tumorigenic potential of cell lines, with MDCK cells as an example, published since 2010 are reviewed. The mechanism of tumorigenicity of MDCK cells is discussed with reference to cell heterogeneity and epithelial to mesenchymal transition (EMT). Understanding the mechanism of the acquisition of a tumorigenic phenotype by MDCK cells might assist in estimating potential risks associated with using tumorigenic cell substrates for vaccine production.
Collapse
Affiliation(s)
- Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, 730030, Lanzhou, China; Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Lingwei Huang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Huihao Wu
- Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Ayimuguli Abudureyimu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| |
Collapse
|
2
|
Logan M, Rinas K, McConkey B, Aucoin MG. Vero cells gain renal tubule markers in low-calcium and magnesium chemically defined media. Sci Rep 2022; 12:6180. [PMID: 35418617 PMCID: PMC9008052 DOI: 10.1038/s41598-022-10221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, a chemically defined, animal component-free media was developed to promote Vero growth in suspension. Key media compounds were screened using Plackett–Burman styled experiments to create a media formulation to support suspension growth. Vero cells remained viable in suspension, but their growth rate was extremely low, conversely, other cell types such as CHO-K1, MDCK and HEK293T were able to grow in single cell suspension in the same media. To investigate the slow growth of Vero cells, RNA-seq analysis was conducted. Vero cells were cultured in three different conditions: adherently in serum-containing medium, adherently in in-house medium, and in suspension in low calcium and magnesium in-house medium. This study illustrates that adherent cells maintain similar gene expression, while the suspension phenotype tends to overexpress genes related to renal tubules.
Collapse
Affiliation(s)
- Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Karsten Rinas
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Brendan McConkey
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Silva CAT, Kamen AA, Henry O. Recent advances and current challenges in process intensification of cell culture‐based influenza virus vaccine manufacturing. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cristina A. T. Silva
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
- Department of Bioengineering McGill University Montréal Québec Canada
| | - Amine A. Kamen
- Department of Bioengineering McGill University Montréal Québec Canada
| | - Olivier Henry
- Department of Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| |
Collapse
|
4
|
Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire. PLoS One 2021; 16:e0246610. [PMID: 34086711 PMCID: PMC8177424 DOI: 10.1371/journal.pone.0246610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Animal cell culture, with single cells growing in suspension, ideally in a chemically defined environment, is a mainstay of biopharmaceutical production. The synthetic environment lacks exogenous growth factors and usually requires a time-consuming adaptation process to select cell clones that proliferate in suspension to high cell numbers. The molecular mechanisms that facilitate the adaptation and that take place inside the cell are largely unknown. Especially for cell lines that are used for virus antigen production such as baby hamster kidney (BHK) cells, the restriction of virus growth through the evolution of undesired cell characteristics is highly unwanted. The comparison between adherently growing BHK cells and suspension cells with different susceptibility to foot-and-mouth disease virus revealed differences in the expression of cellular receptors such as integrins and heparan sulfates, and in the organization of the actin cytoskeleton. Transcriptome analyses and growth kinetics demonstrated the diversity of BHK cell lines and confirmed the importance of well-characterized parental cell clones and mindful screening to make sure that essential cellular features do not get lost during adaptation.
Collapse
|
5
|
Pralow A, Hoffmann M, Nguyen-Khuong T, Pioch M, Hennig R, Genzel Y, Rapp E, Reichl U. Comprehensive N-glycosylation analysis of the influenza A virus proteins HA and NA from adherent and suspension MDCK cells. FEBS J 2021; 288:4869-4891. [PMID: 33629527 DOI: 10.1111/febs.15787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Glycosylation is considered as a critical quality attribute for the production of recombinant biopharmaceuticals such as hormones, blood clotting factors, or monoclonal antibodies. In contrast, glycan patterns of immunogenic viral proteins, which differ significantly between the various expression systems, are hardly analyzed yet. The influenza A virus (IAV) proteins hemagglutinin (HA) and neuraminidase (NA) have multiple N-glycosylation sites, and alteration of N-glycan micro- and macroheterogeneity can have strong effects on virulence and immunogenicity. Here, we present a versatile and powerful glycoanalytical workflow that enables a comprehensive N-glycosylation analysis of IAV glycoproteins. We challenged our workflow with IAV (A/PR/8/34 H1N1) propagated in two closely related Madin-Darby canine kidney (MDCK) cell lines, namely an adherent MDCK cell line and its corresponding suspension cell line. As expected, N-glycan patterns of HA and NA from virus particles produced in both MDCK cell lines were similar. Detailed analysis of the HA N-glycan microheterogeneity showed an increasing variability and a higher complexity for N-glycosylation sites located closer to the head region of the molecule. In contrast, NA was found to be exclusively N-glycosylated at site N73. Almost all N-glycan structures were fucosylated. Furthermore, HA and NA N-glycan structures were exclusively hybrid- and complex-type structures, to some extent terminated with alpha-linked galactose(s) but also with blood group H type 2 and blood group A epitopes. In contrast to the similarity of the overall glycan pattern, differences in the relative abundance of individual structures were identified. This concerned, in particular, oligomannose-type, alpha-linked galactose, and multiantennary complex-type N-glycans.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Terry Nguyen-Khuong
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Markus Pioch
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyXera GmbH, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyXera GmbH, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Pech S, Rehberg M, Janke R, Benndorf D, Genzel Y, Muth T, Sickmann A, Rapp E, Reichl U. Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins. Appl Microbiol Biotechnol 2021; 105:1861-1874. [PMID: 33582836 PMCID: PMC7907048 DOI: 10.1007/s00253-021-11150-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Abstract Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. Key points • Less and more efficient glucose utilization for suspension cell growth • Concerted alteration of metabolic enzyme activity and protein expression • Protein candidates to interfere glycolytic activity in MDCK cells Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11150-z.
Collapse
Affiliation(s)
- Sabine Pech
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Rehberg
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Janke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thilo Muth
- Section S.3 eScience, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyxera GmbH, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
7
|
Ye X, Wang J, Qiao Z, Yang D, Wang J, Abudureyimu A, Yang K, Feng Y, Ma Z, Liu Z. Quantitative proteomic analysis of MDCK cell adhesion. Mol Omics 2020; 17:121-129. [PMID: 33201162 DOI: 10.1039/d0mo00055h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MDCK cells are a key reagent in modern vaccine production. As MDCK cells are normally adherent, creation of suspension cells for vaccine production using genetic engineering approaches is highly desirable. However, little is known regarding the mechanisms and effectors underlying MDCK cell adhesion. In this study, we performed a comparative analysis of whole protein levels between MDCK adhesion and suspension cells using an iTRAQ-based (isobaric tags for relative and absolute quantitation) proteomics approach. We found that expression of several proteins involved in cell adhesion exhibit reduced expression in suspension cells, including at the mRNA level. Proteins whose expression was reduced in suspension cells include cadherin 1 (CDH1), catenin beta-1 (CTNNB1), and catenin alpha-1 (CTNNA1), which are involved in intercellular adhesion; junction plakoglobin (JUP), desmoplakin (DSP), and desmoglein 3 (DSG3), which are desmosome components; and transglutaminase 2 (TGM2) and alpha-actinin-1 (ACTN1), which regulate the adhesion between cells and the extracellular matrix. A functional verification experiment showed that inhibition of E-cadherin significantly reduced intercellular adhesion of MDCK cells. E-Cadherin did not significantly affect the proliferation of MDCK cells and the replication of influenza virus. These findings reveal possible mechanisms underlying adhesion of MDCK cells and will guide the creation of MDCK suspension cells by genetic engineering.
Collapse
Affiliation(s)
- Xuanqing Ye
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rodrigues AF, Fernandes P, Laske T, Castro R, Alves PM, Genzel Y, Coroadinha AS. Cell Bank Origin of MDCK Parental Cells Shapes Adaptation to Serum-Free Suspension Culture and Canine Adenoviral Vector Production. Int J Mol Sci 2020; 21:E6111. [PMID: 32854295 PMCID: PMC7504089 DOI: 10.3390/ijms21176111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022] Open
Abstract
Phenotypic variation in cultured mammalian cell lines is known to be induced by passaging and culture conditions. Yet, the effect these variations have on the production of viral vectors has been overlooked. In this work we evaluated the impact of using Madin-Darby canine kidney (MDCK) parental cells from American Type Culture Collection (ATCC) or European Collection of Authenticated Cell Cultures (ECACC) cell bank repositories in both adherent and suspension cultures for the production of canine adenoviral vectors type 2 (CAV-2). To further explore the differences between cells, we conducted whole-genome transcriptome analysis. ECACC's MDCK showed to be a less heterogeneous population, more difficult to adapt to suspension and serum-free culture conditions, but more permissive to CAV-2 replication progression, enabling higher yields. Transcriptome data indicated that this increased permissiveness is due to a general down-regulation of biological networks of innate immunity in ECACC cells, including apoptosis and death receptor signaling, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, toll-like receptors signaling and the canonical pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. These results show the impact of MDCK source on the outcome of viral-based production processes further elucidating transcriptome signatures underlying enhanced adenoviral replication. Following functional validation, the genes and networks identified herein can be targeted in future engineering approaches aiming at improving the production of CAV-2 gene therapy vectors.
Collapse
Affiliation(s)
- Ana Filipa Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paulo Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tanja Laske
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany;
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
| | - Paula Marques Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany;
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
Lai CC, Weng TC, Chen PL, Tseng YF, Lin CY, Chia MY, Sung WC, Lee MS, Hu AYC. Development and characterization of standard reagents for cell-based prepandemic influenza vaccine products. Hum Vaccin Immunother 2020; 16:2245-2251. [PMID: 32118516 PMCID: PMC7553690 DOI: 10.1080/21645515.2020.1721223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Outbreaks of infection by novel avian influenza virus strains in humans cause public health issues worldwide, and the development of vaccines against such novel strains is the most effective method for the prevention of these virus outbreaks. All types of vaccines must be tested for potency before use; thus, quantitative potency assays are needed for influenza vaccines. The single radial immunodiffusion (SRID) assay is considered the gold standard for quantification of influenza virus antigens, and the SRID reference reagents are essential for the determination of vaccine potency. However, it remains debatable whether reference reagents derived from egg-based vaccine platforms can be used to precisely quantify non-egg-derived vaccines; thus, influenza vaccine production using cell-based platforms has attracted increasing attention. To evaluate the utility of reference reagents derived from a cell-based influenza vaccine platform, we prepared cell-based reference reagents from MDCK cell-grown viruses and compared them with egg-derived reference reagents. A primary liquid standard (PLS) was purified from cell-derived candidate influenza vaccine viruses, and hemagglutinin (HA) antigen content was determined by a densitometric method. The produced PLS could be stored at 4°C for more than 10 months. We also established a simple HA protein purification method for goat antiserum preparation, and the performance of the resulting antiserum was compared to that of standard reagents obtained using different production platforms. The results of this study indicate that these reference reagents can be used for both cell-based and egg-based production platforms and that the differences between these two types of platforms are negligible.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan.,College of Life Science, National Tsing Hua University , Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan.,College of Life Science, National Tsing Hua University , Hsinchu, Taiwan
| | - Yu-Fen Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University , Taichung, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan, Taiwan
| |
Collapse
|
10
|
Bissinger T, Fritsch J, Mihut A, Wu Y, Liu X, Genzel Y, Tan WS, Reichl U. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Vaccine 2019; 37:7003-7010. [DOI: 10.1016/j.vaccine.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
11
|
Hämmerling F, Pieler MM, Hennig R, Serve A, Rapp E, Wolff MW, Reichl U, Hubbuch J. Influence of the production system on the surface properties of influenza A virus particles. Eng Life Sci 2017; 17:1071-1077. [PMID: 32624734 DOI: 10.1002/elsc.201700058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
In this study, influenza A/Puerto Rico/8/34 H1N1 virus particles (VP) produced in adherent and suspension Madin Darby canine kidney cells were investigated with a broad analytical toolbox to obtain more information on the VP's surface properties potentially affecting their aggregation behavior. First, differences in aggregation behavior were revealed by VP size distributions obtained via differential centrifugal sedimentation and confirmed by dynamic light scattering. The VP produced in adherent cells showed increased levels of aggregation in a 20 mM NaCl 10 mM Tris-HCl pH 7.4 low-salt buffer. This included the formation of multimers (dimers up to pentamers), whereas VP produced in suspension cells displayed no tendency toward aggregate formation. To investigate the cause of these differences in aggregation behavior, the VP samples were compared based on their zeta potential, their surface hydrophobicity, their lipid composition, and the N-glycosylation of their major VP surface protein hemagglutinin. The zeta potential and the hydrophobicity of the VP produced in the adherent cells was significantly decreased compared to the VP produced in the suspension cells. The lipid composition of both VP systems was approximately identical. The hemagglutinin of the VP produced in adherent cells included more of the larger N-glycans, whereas the VP produced in suspension cells included more of the smaller N-glycans. These results indicate that differences in the glycosylation of viral surface proteins should be monitored to characterize VP hydrophobicity and aggregation behavior, and to avoid aggregate formation and product losses in virus purification processes for vaccines and gene therapy.
Collapse
Affiliation(s)
- Frank Hämmerling
- Karlsruhe Institute of Technology (KIT) Institute of Engineering in Life Sciences Section IV: Biomolecular Separation Engineering Karlsruhe Germany
| | - Michael M Pieler
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany.,GlyXera GmbH Magdeburg Germany
| | - Anja Serve
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany.,GlyXera GmbH Magdeburg Germany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences Mittelhessen Gießen Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems Bioprocess Engineering Magdeburg Germany.,Otto von Guericke University Magdeburg Chair of Bioprocess Engineering Magdeburg Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT) Institute of Engineering in Life Sciences Section IV: Biomolecular Separation Engineering Karlsruhe Germany
| |
Collapse
|
12
|
Pieler MM, Heyse A, Wolff MW, Reichl U. Specific ion effects on the particle size distributions of cell culture-derived influenza A virus particles within the Hofmeister series. Eng Life Sci 2017; 17:470-478. [PMID: 32624792 PMCID: PMC6999566 DOI: 10.1002/elsc.201600153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 11/11/2022] Open
Abstract
Virus particle (VP) aggregation can have serious implications on clinical safety and efficacy of virus-based therapeutics. Typically, VP are suspended in buffers to establish defined product properties. Salts used to achieve these properties show specific effects in chemical and biological systems in a reoccurring trend known as Hofmeister series (HS). Hofmeister series effects are ubiquitous and can affect colloidal particle systems. In this study, influences of different ions (anions: SO4 2-, HPO4 2-, Cl-, Br-, NO3 -, I-; cations: K+, Na+, Li+, Mg2+, Ca2+) on particle size distributions of cell culture-derived influenza VP were investigated. For the experimental setup, influenza virus A/Puerto Rico/8/34 (H1N1) VP produced in adherent and suspension Madin Darby canine kidney cells were used. Inactivated and concentrated virus harvests were dialyzed against buffers containing the ions of interest, followed by differential centrifugal sedimentation to measure particle size distributions. VP from both cell lines showed no aggregation over a wide range of buffers containing different salts in concentrations ≥60 mM. However, when dialyzed to low salt or Ca2+ buffers, VP produced in adherent cells showed increased aggregation compared to VP produced in suspension cells. Additionally, changes in VP diameters depending on specific ion concentrations were observed that partially reflected the HS trend.
Collapse
Affiliation(s)
| | - Anja Heyse
- Otto von Guericke University Magdeburg39106MagdeburgGermany
| | - Michael Werner Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems39106MagdeburgGermany
- Otto von Guericke University Magdeburg39106MagdeburgGermany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems39106MagdeburgGermany
- Otto von Guericke University Magdeburg39106MagdeburgGermany
| |
Collapse
|
13
|
A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection. Vaccine 2016; 34:6367-6374. [DOI: 10.1016/j.vaccine.2016.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022]
|
14
|
Kluge S, Genzel Y, Laus K, Serve A, Pflugmacher A, Peschel B, Rapp E, Reichl U. Ezrin and HNRNP expression correlate with increased virus release rate and early onset of virus-induced apoptosis of MDCK suspension cells. Biotechnol J 2016; 11:1332-1342. [DOI: 10.1002/biot.201600384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sabine Kluge
- Chair of Bioprocess Engineering; Otto von Guericke University; Magdeburg Germany
| | - Yvonne Genzel
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Kim Laus
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Anja Serve
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Antje Pflugmacher
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Britta Peschel
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Erdmann Rapp
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| | - Udo Reichl
- Chair of Bioprocess Engineering; Otto von Guericke University; Magdeburg Germany
- Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| |
Collapse
|
15
|
Feng L, Tang Y, Wu P, Chu X, Wang W, Hou J. H9 subtype influenza vaccine in MDCK single-cell suspension culture with stable expression of TMPRSS2: Generation and efficacy evaluation. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Lei Feng
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Yinghua Tang
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Peipei Wu
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| | - Xuan Chu
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
| | - Weifeng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals; Jiangsu Academy of Agricultural Sciences; Nanjing China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; Yangzhou China
| |
Collapse
|
16
|
Serve A, Pieler MM, Benndorf D, Rapp E, Wolff MW, Reichl U. Comparison of Influenza Virus Particle Purification Using Magnetic Sulfated Cellulose Particles with an Established Centrifugation Method for Analytics. Anal Chem 2015; 87:10708-11. [DOI: 10.1021/acs.analchem.5b02681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anja Serve
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael Martin Pieler
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael Werner Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|