1
|
Li K, Wang C, Yang F, Cao W, Zhu Z, Zheng H. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 2021; 12:571509. [PMID: 33717061 PMCID: PMC7952751 DOI: 10.3389/fimmu.2021.571509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which has been regarded as a persistent challenge for the livestock industry in many countries. Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD that can spread rapidly by direct and indirect transmission. FMDV is internalized into host cell by the interaction between FMDV capsid proteins and cellular receptors. When the virus invades into the cells, the host antiviral system is quickly activated to suppress the replication of the virus and remove the virus. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate host machine and circumvent the host antiviral responses. Therefore, identification of virus-host interactions is critical for understanding the host defense against virus infections and the pathogenesis of the viral infectious diseases. This review elaborates on the virus-host interactions during FMDV infection to summarize the pathogenic mechanisms of FMD, and we hope it can provide insights for designing effective vaccines or drugs to prevent and control the spread of FMD and other diseases caused by picornaviruses.
Collapse
Affiliation(s)
- Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Bidart J, Mignaqui A, Kornuta C, Lupi G, Gammella M, Soria I, Galarza R, Ferella A, Cardillo S, Langellotti C, Quattrocchi V, Durocher Y, Wigdorovitz A, Marcipar I, Zamorano P. FMD empty capsids combined with the Immunostant Particle Adjuvant -ISPA or ISA206 induce protective immunity against foot and mouth disease virus. Virus Res 2021; 297:198339. [PMID: 33596405 DOI: 10.1016/j.virusres.2021.198339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Foot and Mouth Disease Virus (FMDV) causes economy losses and is controlled by vaccination in many countries. Vaccine formulations based on empty capsids or Virus-Like Particles (VLPs) have the advantage of avoiding the biological hazard of using infectious FMDV, albeit are poorly immunogenic. Recently, we have described that ISPA a new Immune Stimulating Complex adjuvant, is useful to improve the response against FMD of vaccines that use inactivated virus. Now, the adjuvant effects of ISPA and ISA 206 (water/oil/water) on a VLPs-based FMD vaccine were evaluated. VLPs (strain A/Argentina/2001) were obtained in mammalian cell cultures and their elicitation of an immune response against FMDV with and without ISPA or ISA 206 was evaluated in mice as a first approach. Notably, VLPs-ISPA and VLPs-ISA 206 vaccines induced protection against viral challenge in 100 % of mice, while protection induced by VLPs alone was of 40 %. Total and neutralizing FMDV antibodies were higher in the VLPs-ISPA and VLPs-ISA 206 groups compared to the VLPs group. VLPs-ISPA induced significantly higher (p < 0.001) IgG1, IgG2a, IgG2b and IgG3 titers than the VLPs vaccine. Moreover, in comparison with non-adjuvanted VLPs, VLPs-ISPA and VLPs-ISA 206 elicited an increased virus-specific T response, including higher IFNγ+/CD8 + lymphocyte production in mice. When these vaccines were tested in calves, antibody titers reached an Expected Percentage of Protection (EPP) above 90 % in the case of the VLPs-ISPA and VLPs-ISA 206 vaccines, while, in the VLPs group, EPP reached 25 %. IFNγ levels secreted by mononuclear cells of VLP-ISPA-vaccinated cattle were significantly higher than in the VLPs group. Overall, the results demonstrate that VLPs-ISPA or VLPs-ISA 206 are promising formulations for the development of a novel FMD vaccine.
Collapse
Affiliation(s)
- J Bidart
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - A Mignaqui
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, IFAB, INTA - CONICET, San Carlos de Bariloche, Rio Negro, Argentina
| | - C Kornuta
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - G Lupi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Gammella
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - I Soria
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - R Galarza
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - A Ferella
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - S Cardillo
- Biogenesis Bago SA, Buenos Aires, Argentina
| | - C Langellotti
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - V Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Y Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - A Wigdorovitz
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - I Marcipar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - P Zamorano
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Langellotti CA, Gammella M, Soria I, Bellusci C, Quattrocchi V, Vermeulen M, Mongini C, Zamorano PI. An Improved DNA Vaccine Against Bovine Herpesvirus-1 Using CD40L and a Chemical Adjuvant Induces Specific Cytotoxicity in Mice. Viral Immunol 2020; 34:68-78. [PMID: 33146595 DOI: 10.1089/vim.2020.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.
Collapse
Affiliation(s)
| | - Mariela Gammella
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Carolina Bellusci
- Universidad Nacional de Rio Negro, Sede Atlántica, Viedma, Río Negro, Argentina
| | | | - Monica Vermeulen
- Laboratorio de células presentadoras de antígeno y respuesta inflamatoria. Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Mongini
- Instituto de Virología-IVIT (INTA-CONICET), Buenos Aires, Argentina
| | - Patricia I Zamorano
- Cátedra de Inmunología Aplicada, Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
4
|
Cellular response to persistent foot-and-mouth disease virus infection is linked to specific types of alterations in the host cell transcriptome. Sci Rep 2018; 8:5074. [PMID: 29568077 PMCID: PMC5864922 DOI: 10.1038/s41598-018-23478-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/14/2018] [Indexed: 11/08/2022] Open
Abstract
Food-and-mouth disease virus (FMDV) is a highly contagious virus that seriously threatens the development of animal husbandry. Although persistent FMDV infection can dramatically worsen the situation, the mechanisms involved in persistent FMDV infection remain unclear. In the present study, we identified the presence of evolved cells in the persistently FMDV-infected cell line. These cells exhibited resistance to the parent FMDV and re-established persistent infection when infected with FMDV-Op (virus supernatant of persistent infection cell lines), emphasizing the decisive role of evolved host cells in the establishment of persistent FMDV infection. Using RNA-seq, we identified the gene expression profiles of these evolved host cells. In total, 4,686 genes were differentially expressed in evolved cells compared with normal cells, with these genes being involved in metabolic processes, cell cycle, and cellular protein catabolic processes. In addition, 1,229 alternative splicing events, especially skipped exon events, were induced in evolved cells. Moreover, evolved cells exhibited a stronger immune defensive response and weaker MAPK signal response than normal cells. This comprehensive transcriptome analysis of evolved host cells lays the foundation for further investigations of the molecular mechanisms of persistent FMDV infection and screening for genes resistant to FMDV infection.
Collapse
|
5
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 6 - Immunology. Transbound Emerg Dis 2016; 63 Suppl 1:56-62. [DOI: 10.1111/tbed.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong VIC Australia
| |
Collapse
|
6
|
Fu Y, Zhu Z, Chang H, Liu Z, Liu J, Chen H. Comparative transcriptome analyses indicate enhanced cellular protection against FMDV in PK15 cells pretreated with IFN-γ. Gene 2016; 586:206-15. [PMID: 27018244 DOI: 10.1016/j.gene.2016.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Interferon gamma (IFN-γ) can induce a host antiviral response to foot and mouth disease virus (FMDV) in vivo and in vitro. To elucidate the mechanism of IFN-γ anti FMDV infection in host cells, high-throughput RNA sequencing was analyzed for systemic changes in gene expression profiles in PK15 cells infected by FMDV with or without IFN-γ pretreatment. More than 25 million reads, covering 1.2-1.5 Gb, were analyzed from each experiment panel. FMDV challenge altered the transcription of genes involved in positively and negatively regulating cell death or apoptosis; however, the expected immune suppression response was not obvious. IFN-γ pretreatment combined with FMDV infection normalized the increase in apoptosis. Furthermore, the transcription factors required for IFN-γ functioning, STAT1 and IRF1 were up-regulated by IFN-γ pretreatment and stimulated downstream IFN-stimulated genes (ISGs). These induced ISGs are mainly responsible for antigen processing, antigen presentation or antiviral defense. Interestingly, a synergistic effect on some ISGs, including OAS1, OAS2, MX1, MX2, RIG-I and IFIT1, was observed in the combined treatment compared to the IFN-γ treatment alone. The suggested effects identified by RNA sequencing were consistent with cellular morphology changes and confirmed by related protein markers. This is the first report exploring transcriptome alterations introduced by FMDV infection with or without IFN-γ pretreatment. The identified key host genes that control cell survival in vitro broaden our comprehensive understanding of how IFN-γ inhibits FMDV infection and may shed light on developing improved FMD control approaches.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Zesen Zhu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jing Liu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Huiyong Chen
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|