1
|
Chen-Fei L, Chou-Min C, Jiun-Yan L. Feasibility of vaccination against Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. FISH & SHELLFISH IMMUNOLOGY 2020; 104:431-438. [PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The giant freshwater prawn/giant river prawn, Macrobrachium rosenbergii is one of the high market value crustaceans cultured worldwide. The intensified aquaculture of the species has led to the outbreak of infectious diseases, prominently, the white tail disease (WTD). It is caused by the infection of Macrobrachium rosenbergii nodavirus (MrNV), which was classified in the family of Nodaviridae. To-date, there are no effective prophylactic and therapeutic agents available against MrNV infection. Vaccination is known to be the most effective prophylactic agent in disease prevention. However, vaccine development against virus infection in crustaceans is equivocal. The feasibility of vaccination in conferring immune protection in crustaceans against infectious diseases is disputable. The argument lies in the fact that crustaceans do not possess adaptive immunity, which is the main immune component that functions to establish immunological memory upon vaccination. Nevertheless, an increasing number of literatures has been documented, which concerns the development of vaccines against infectious diseases in crustaceans. The current review deliberates different approaches in vaccine development against MrNV, which were documented in the past years. It is noteworthy that the live-attenuated MrNV vaccine has not been experimented by far. Thus, the potential of live-attenuated MrNV vaccine in conferring long-term immune protection through the establishment of innate immune memory is currently being discussed.
Collapse
Affiliation(s)
- Low Chen-Fei
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Chong Chou-Min
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Loh Jiun-Yan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. JOURNAL OF FISH DISEASES 2018; 41:1771-1781. [PMID: 30270534 DOI: 10.1111/jfd.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
3
|
Shang Y, Wang M, Xiao G, Wang X, Hou D, Pan K, Liu S, Li J, Wang J, Arif BM, Vlak JM, Chen X, Wang H, Deng F, Hu Z. Construction and Rescue of a Functional Synthetic Baculovirus. ACS Synth Biol 2017; 6:1393-1402. [PMID: 28383905 DOI: 10.1021/acssynbio.7b00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic viruses provide a powerful platform to delve deeper into the nature and function of viruses as well as to engineer viruses with novel properties. So far, most synthetic viruses have been RNA viruses (<30 kb) and small DNA viruses, such as bacteriophage phiX174. Baculoviruses contain a large circular dsDNA genome of 80-180 kb and have been used as biocontrol agents and protein expression vectors. Here, we report on the first synthesis of a baculovirus based on the type species Autographa californica nucleopolyhedrovirus, AcMNPV, by a combination of PCR and transformation-associated recombination in yeast. The synthetic genome, designated AcMNPV-WIV-Syn1, is 145 299 bp comprising the complete genome of AcMNPV except for the hr4a locus that was replaced with an ∼11.5 kb cassette of bacterial and yeast artificial chromosomal elements and an egfp gene. Sf9 insect cells were transfected with AcMNPV-WIV-Syn1 DNA and progeny virus was examined by electron microscopy, and assayed in one-step growth curves and oral infectivity. The results conclusively showed that the rescued virus AcMNPV-WIV-Syn1 had structural and biological properties comparable to the parental virus. We validated a proof of concept that a bona fide baculovirus can be synthesized. The new platform allows manipulation at any or multiple loci and will facilitate future studies such as identifying the minimal baculovirus genome and construction of better expression vectors. This is the largest DNA virus synthesized so far, and its success is likely to be the impetus to stimulate the fields of other large DNA viruses such as herpesviruses and poxviruses.
Collapse
Affiliation(s)
- Yu Shang
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Manli Wang
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Gengfu Xiao
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xi Wang
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dianhai Hou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Kai Pan
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shurui Liu
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Li
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jun Wang
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Basil M. Arif
- Laboratory
for Molecular Virology, Great Lakes Forestry Centre, Sault Sainte Marie, Ontario P6A 2E5, Canada
| | - Just M. Vlak
- Laboratory
of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xinwen Chen
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|