1
|
Srikakulapu P, Pattarabanjird T, Upadhye A, Bontha SV, Osinski V, Marshall MA, Garmey J, Deroissart J, Prohaska TA, Witztum JL, Binder CJ, Holodick NE, Rothstein TL, McNamara CA. B-1b Cells Have Unique Functional Traits Compared to B-1a Cells at Homeostasis and in Aged Hyperlipidemic Mice With Atherosclerosis. Front Immunol 2022; 13:909475. [PMID: 35935999 PMCID: PMC9353528 DOI: 10.3389/fimmu.2022.909475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| | | | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Sai Vineela Bontha
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Victoria Osinski
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas A. Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joseph L. Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nichol E. Holodick
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| |
Collapse
|
2
|
Jaufmann J, Franke FC, Sperlich A, Blumendeller C, Kloos I, Schneider B, Sasaki D, Janssen KP, Beer-Hammer S. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J 2021; 35:e21470. [PMID: 33710696 DOI: 10.1096/fj.202002495r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fabian Christoph Franke
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Carolin Blumendeller
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Isabel Kloos
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Medical SC New Technology Strategy Office, General Research Institute, Nitto Boseki, Co., Ltd, Tokyo, Japan
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Chidambaram V, Jones JM, Lokhandwala PM, Bloch EM, Lanzkron S, Stewart R, Pecker LH. Low rates of transfusion-transmitted infection screening in chronically transfused adults with sickle cell disease. Transfusion 2021; 61:2421-2429. [PMID: 34251034 DOI: 10.1111/trf.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/24/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adults with sickle cell disease (SCD) on chronic transfusion therapy are exposed to a large volume of blood products, thus increasing their risk of transfusion-associated human immunodeficiency virus (HIV), hepatitis C (HCV), and hepatitis B (HBV). METHODS We performed a systematic chart review of chronically transfused SCD subjects at the Johns Hopkins Sickle Cell Center for Adults between October 2014 and September 2019 to determine our Center's adherence to the 2014 National Heart, Lung and Blood Institute (NHLBI) SCD guidelines for annual screening for Transfusion Transmitted infections (TTI) and assessed HBV immunity and HBV vaccination rates. RESULTS The study included 85 subjects with a median age of 34 years (23-63); 52% were female. No subject received annual screening; 68 subjects (80%) were screened for HIV, 60 subjects (71%) for HCV and 53 subjects (62%) for HBV infections at least once in the study period. Of those screened, one patient was newly diagnosed with HCV infection, and none with HIV or HBV infection. Among 31 subjects tested for anti-Hepatitis B surface antibody, 16 subjects (52%) tested negative. Nineteen (20%) subjects had HBV vaccination documented. CONCLUSIONS Low adherence to the NHLBI TTI screening guidelines, especially for HBV, highlights the resource intensiveness of this patient population. The low rates of anti-Hepatitis B surface antibody positivity highlight the need to confirm vaccination, provide boosters as indicated, and investigate the adults with SCD's immune response to HBV vaccination.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer M Jones
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Parvez M Lokhandwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Biomedical Services, American Red Cross, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sophie Lanzkron
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rosalyn Stewart
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lydia H Pecker
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Hendrickson JE. Red blood cell alloimmunization and sickle cell disease: a narrative review on antibody induction. ANNALS OF BLOOD 2020; 5:33. [PMID: 33554044 PMCID: PMC7861514 DOI: 10.21037/aob-2020-scd-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The high prevalence of red blood cell (RBC) alloantibodies in people with sickle cell disease (SCD) cannot be debated. Why people with SCD are so likely to form RBC alloantibodies, however, remains poorly understood. Over the past decade, a better understanding of non-ABO blood group antigen variants has emerged; RH genetic diversity and the role this diversity plays in RBC alloimmunization is discussed elsewhere. Outside of antigen variants, the immune systems of people with SCD are known to be different than those of people without SCD. Some of these differences are due to effects of free heme, whereas others are impacted by hyposplenism. Descriptive studies of differences in white blood cell (WBC) subsets, platelet counts and function, and complement activation between people with SCD and race-matched controls exist. Studies comparing the immune systems of alloimmunized people with SCD to non-alloimmunized people with SCD to race-matched controls without SCD have uncovered differences in T-cell subsets, monocytes, Fcγ receptor polymorphisms, and responses to free heme. Studies in murine models have documented the role that recipient inflammation plays in RBC alloantibody formation, with human studies reporting a similar association. Murine studies have also reported the importance of type 1 interferon (IFNα/β), known to play a pivotal role in autoimmunity, in RBC alloantibody formation. The goal of this manuscript is to review existing data on factors influencing RBC alloantibody induction in people with SCD with a focus on inflammation and other immune system considerations, from the bench to the bedside.
Collapse
Affiliation(s)
- Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Jaufmann J, Carevic M, Tümen L, Eliacik D, Schmitt F, Hartl D, Beer-Hammer S. Enhanced IgG 1 -mediated antibody response towards thymus-dependent immunization in CXCR1-deficient mice. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:210-222. [PMID: 33226189 PMCID: PMC7860589 DOI: 10.1002/iid3.380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Background Chemokine receptors and their corresponding ligands are key players of immunity by regulation of immune cell differentiation and migration. CXCR1 is a high‐affinity receptor for CXCL8. Differential expression of CXCR1 is associated with a variety of human pathologies including cancer and inflammatory diseases. While various studies have highlighted the importance of CXCR1‐mediated CXCL8‐sensing for neutrophil trafficking and function, its role in B‐cell responses remains unsolved. Therefore, our aim was to investigate innate and adaptive antibody responses in CXCR1‐deficient mice. Methods Cell populations of the spleen and the peritoneal cavity were identified and quantified via flow cytometry. To investigate thymus‐independent (TI) and thymus‐dependent (TD) antibody responses, mice were immunized intraperitoneally with TNP‐Ficoll, Pneumovax23, and TNP‐Chicken Gamma Globulin. Mice were bled before as well as 7 and 14 days after vaccination to collect serum. Serum antibody levels overtime were analyzed according to their specificity by enzyme‐linked immunosorbent assay. B‐1 cell functionality was examined by IL‐5/IL‐5Rα‐dependent stimulation of peritoneal and splenic cells in vitro. To analyze CXCR1/2‐expression, CD19+ splenocytes were enriched by magnetic‐activated cell sorting before isolation of total RNA contents, followed by reverse transcription and real‐time polymerase chain reaction. Results The distribution of natural B‐1 cell populations was disturbed in the absence of CXCR1, while their responsiveness towards TI antigens and in vitro stimulation remained functional. Besides, CXCR1‐deficiency was accompanied by increased frequencies of follicular B‐2 cells in the spleen. Interestingly, these mice produced elevated levels of antigen‐specific IgG1 upon TD immunization and harbored a significantly enlarged proportion of CXCR5‐expressing T helper (H) cells. CXCR1‐expression was detectable in CD19+ splenocytes derived from wild‐type, but not CXCR1‐deficient mice. Conclusion Our data demonstrate a previously unknown relevance of CXCR1 for the production of specific IgG1 in response to vaccination. These findings identify CXCR1 as a promising candidate for future studies on the regulation of adaptive antibody responses.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Melanie Carevic
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Derya Eliacik
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fee Schmitt
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Dominik Hartl
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany.,Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Jaufmann J, Tümen L, Schmitt F, Schäll D, von Holleben M, Beer-Hammer S. SLy2-deficiency promotes B-1 cell immunity and triggers enhanced production of IgM and IgG 2 antibodies against pneumococcal vaccine. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:736-752. [PMID: 33098380 PMCID: PMC7654406 DOI: 10.1002/iid3.365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Background Despite the benefits of existing vaccines, Streptococcus pneumoniae is still responsible for the greatest proportion of respiratory tract infections around the globe, thereby substantially contributing to morbidity and mortality in humans. B‐1 cells are key players of bacterial clearance during pneumococcal infection and even provide long‐lasting immunity towards S. pneumoniae. Previous reports strongly suggest an essential role of the immunoinhibitory adapter Src homology domain 3 lymphocyte protein 2 (SLy2) for B‐1 cell‐mediated antibody production. The objective of this study is to evaluate S. pneumoniae‐directed B cell responses in the context of SLy2 deficiency. Methods B‐1 cell populations were analyzed via flow cytometry before and after pneumococcal immunization of SLy2‐deficient and wild‐type control mice. Global and vaccine‐specific immunoglobulin M (IgM) and IgG antibody titers were assessed by enzyme‐linked immunosorbent assay. To investigate survival rates during acute pneumococcal lung infection, mice were intranasally challenged with S. pneumoniae (serotype 3). Complementary isolated splenic B cells were stimulated in vitro and their proliferative response was assessed by fluorescent staining. In vitro antibody secretion was quantified by LEGENDplex. Results We demonstrate increased frequencies of B‐1 cells and elevated titers of preantigenic IgM in SLy2‐deficient mice. In addition, these mice produce significantly more amounts of IgM and IgG2 upon pneumococcal vaccination. Knocking out SLy2 did not induce survival advantages in our murine model of acute pneumonia, indicating the presence of compensatory mechanisms. Conclusion Our results reveal reinforced specific antibody responses towards pneumococcal polysaccharides and enhanced IgG2 secretion as a consequence of SLy2 deficiency, which could be relevant to the development of more efficient vaccines.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fee Schmitt
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daniel Schäll
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Max von Holleben
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
7
|
|
8
|
Abstract
B-1 cells represent an innate-like early-developing B cell population, whose existence as an independent lymphocyte subset has been questioned in the past. Recent molecular and lineage tracing studies have not only confirmed their unique origins and differentiation paths, they have also provided a rationale for their distinctive functionalities compared to conventional B cells. This review summarizes our current understanding of B-1 cell development, and the activation events that regulate B-1 cell responses to self and foreign antigens. We discuss the unresolved question to what extent BCR engagement, that is, antigen-specificity versus innate signaling contributes to B-1 cell's participation in tissue homeostasis and immune defense as providers of 'natural' and antigen-induced antibody responses, and as cytokine-producing immune regulators.
Collapse
|
9
|
Roberts S, Metzger DW, Szczepanek SM. Influenza Vaccination Protects Against Pandemic H1N1 Infection in Sickle Cell Disease Mice. Viral Immunol 2018; 31:470-471. [PMID: 29688839 DOI: 10.1089/vim.2018.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza infection is associated with enhanced pathology in individuals with sickle cell disease (SCD). Despite being a high priority group for annual influenza vaccination, little is known about long-term responses to influenza vaccination in this patient population. To model flu vaccination, we inoculated SCD and wild type (WT) littermate mice with the seasonal flu vaccine [containing pandemic H1N1 (pH1N1) antigen], bled the mice before and after vaccination, and intranasally challenged them with a high dose (400 PFU) of pH1N1 12 weeks later. Both WT and SCD mice were fully protected from infection, and anti-influenza immunoglobulin G titers were significantly elevated in both groups after vaccination. It appears that flu vaccination is effective in SCD mice and our data support the clinical practice of regular flu vaccination in SCD patients.
Collapse
Affiliation(s)
- Sean Roberts
- 1 Department of Immunology and Microbial Disease, Albany Medical College , Albany, New York
| | - Dennis W Metzger
- 1 Department of Immunology and Microbial Disease, Albany Medical College , Albany, New York
| | - Steven M Szczepanek
- 2 Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, University of Connecticut , Storrs, Connecticut
| |
Collapse
|