1
|
Strydom C, Abolnik C. Seven infectious bronchitis virus genotypes including South American-origin G1-11 and Asian-origin GVI-1 circulated in southern African poultry from 2010 to 2020. Virus Res 2025; 355:199568. [PMID: 40180221 PMCID: PMC12002962 DOI: 10.1016/j.virusres.2025.199568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Infectious bronchitis virus (IBV) affects the respiratory, urogenital and reproductive systems of chickens and causes major economic losses. Biosecurity and vaccinations are used to limit the disease's impact, and identifying the circulating strains is important for selecting appropriate vaccines. The partial spike (S1) genes of 364 IBVs, isolated from commercial chickens in Botswana, Eswatini, Namibia and South Africa from 2010 to 2020, were phylogenetically analyzed. Seven genotypes were identified: 184 viruses (50,5 %) were classified as genotype GI-19 (QX) and 78 (21,4 %) were GI-1 (Mass/H120). Thirty-nine (10,7 %) were genotype GI-13 (4/91), 29 (8,0 %) were GVI-1 (TC07-2), 19 (5,2 %) were GI-23 (Variant 2), and 13 (3,6 %) were GI-11 (UFMG/G-Brazil). Two (0.5 %) viruses belonged to the GIV-1 (DE/072/92) genotype. Genotype GI-11 had not been reported outside South America before but has evidently circulated in South Africa for at least a decade. Similarly, genotype GVI-1, previously thought to be restricted to Asia, has been present in southern Africa since at least 2010. Prior to 2013, only Mass and H120 vaccines were permitted to be used in South Africa, but since 2013 793/B (GI-13), QX (GI-19), 4-91 (GI-13) and Variant 2 (GI-23) live attenuated vaccines were permitted. Accordingly, the four IBV variants we identified were putative recombinants of genotypes G1-1 and G1-19, G1-13 and G1-19, or G1-13 and unknown IBV strains, but these variant viruses did not spread extensively or persist in the region. The phylogenetic evidence points to imported contaminated poultry and poultry products as the source of new IBV genotypes in southern Africa.
Collapse
Affiliation(s)
- Christine Strydom
- SMT Veterinary Laboratory, Irene, Pretoria 0178, South Africa; Deltamune (Pty) Ltd, Roodeplaat, Pretoria, 0039, South Africa; Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
2
|
Wang M, Bo Z, Zhang C, Guo M, Wu Y, Zhang X. Deciphering the Genetic Variation: A Comparative Analysis of Parental and Attenuated Strains of the QXL87 Vaccine for Infectious Bronchitis. Animals (Basel) 2024; 14:1784. [PMID: 38929403 PMCID: PMC11200882 DOI: 10.3390/ani14121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The QXL87 live attenuated vaccine strain for infectious bronchitis represents the first approved QX type (GI-19 lineage) vaccine in China. This strain was derived from the parental strain CK/CH/JS/2010/12 through continuous passage in SPF chicken embryos. To elucidate the molecular mechanism behind its attenuation, whole-genome sequencing was conducted on both the parental and attenuated strains. Analysis revealed 145 nucleotide mutations in the attenuated strain, leading to 48 amino acid mutations in various proteins, including Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a (1), E (1), and N (1). Additionally, a frameshift mutation caused by a single base insertion in the ORFX resulted in a six-amino-acid extension. Subsequent comparison of post-translational modification sites, protein structure, and protein-protein binding sites between the parental and attenuated strains identified three potential virulence genes: Nsp2, Nsp3, and S. The amino acid mutations in these proteins not only altered their conformation but also affected the distribution of post-translational modification sites and protein-protein interaction sites. Furthermore, three potential functional mutation sites-P106S, A352T, and L472F, all located in the Nsp2 protein-were identified through PROVEAN, PolyPhen, and I-Mutant. Overall, our findings suggest that Nsp2, Nsp3, and S proteins may play a role in modulating IBV pathogenicity, with a particular focus on the significance of the Nsp2 protein. This study contributes to our understanding of the molecular mechanisms underlying IBV attenuation and holds promise for the development of safer live attenuated IBV vaccines using reverse genetic approaches.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| |
Collapse
|
3
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Msoffe PLM, Suarez DL. Molecular Characterization of Complete Genome Sequence of an Avian Coronavirus Identified in a Backyard Chicken from Tanzania. Genes (Basel) 2023; 14:1852. [PMID: 37895200 PMCID: PMC10606662 DOI: 10.3390/genes14101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3' poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5'UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3'UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2-89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00200, Kenya
| | | | - Gaspar H. Chiwanga
- Tanzania Veterinary Laboratory Agency, South Zone, Mtwara P.O. Box 186, Tanzania
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3021, Tanzania
- National Ranching Company Ltd., Dodoma P.O. Box 1819, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| |
Collapse
|
4
|
Goławski M, Lewandowski P, Jabłońska I, Delijewski M. The Reassessed Potential of SARS-CoV-2 Attenuation for COVID-19 Vaccine Development—A Systematic Review. Viruses 2022; 14:v14050991. [PMID: 35632736 PMCID: PMC9146402 DOI: 10.3390/v14050991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Live-attenuated SARS-CoV-2 vaccines received relatively little attention during the COVID-19 pandemic. Despite this, several methods of obtaining attenuated coronaviruses are known. In this systematic review, the strategies of coronavirus attenuation, which may potentially be applied to SARS-CoV-2, were identified. PubMed, Scopus, Web of Science and Embase databases were searched to identify relevant articles describing attenuating mutations tested in vivo. In case of coronaviruses other than SARS-CoV-2, sequence alignment was used to exclude attenuating mutations that cannot be applied to SARS-CoV-2. Potential immunogenicity, safety and efficacy of the attenuated SARS-CoV-2 vaccine were discussed based on animal studies data. A total of 27 attenuation strategies, used to create 101 different coronaviruses, have been described in 56 eligible articles. The disruption of the furin cleavage site in the SARS-CoV-2 spike protein was identified as the most promising strategy. The replacement of core sequences of transcriptional regulatory signals, which prevents recombination with wild-type viruses, also appears particularly advantageous. Other important attenuating mutations encompassed mostly the prevention of evasion of innate immunity. Sufficiently attenuated coronaviruses typically caused no meaningful disease in susceptible animals and protected them from challenges with virulent virus. This indicates that attenuated COVID-19 vaccines may be considered as a potential strategy to fight the threat posed by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
- Correspondence:
| | - Piotr Lewandowski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| | - Iwona Jabłońska
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| |
Collapse
|
5
|
Abstract
The world of vaccines has changed tremendously since the time of Louis Pasteur. In the present day, it is regarded as vaccinology, a discipline which includes not only the knowledge of vaccine production, strategies for its delivery and influence on the clinical course of disease and the response of the host immune system but also regulatory, ethical, economic and ecological aspects of their use. A hundred years after Pasteur created the first vaccine, there was another scientific breakthrough of great importance in this field, i. e. Sanger sequencing. Progress in genome sequencing and other molecular techniques over the intervening 40 years has been enormous. High-throughput sequencing (HTS) platforms and bioinformatics tools are becoming widely available, falling in cost, and results are achieved very quickly. They enable the construction of modern vaccines, as well as the assessment of their safety, effectiveness and impact on the host organism and the environment. These techniques can also provide a tool for quality control of vaccines. Unprecedented possibilities are opened up by the HTS technique, but limiting factors on its implementation have to be contended with such as lack of reference materials and problems with method optimisation or validation. In the face of the current COVID-19 pandemic, a significant role is allotted to this sequencing technique while an effective vaccine against the disease caused by SARS-CoV-2 is sough.
Collapse
|
6
|
Lupini C, Quaglia G, Mescolini G, Russo E, Salaroli R, Forni M, Boldini S, Catelli E. Alteration of immunological parameters in infectious bronchitis vaccinated-specific pathogen-free broilers after the use of different infectious bursal disease vaccines. Poult Sci 2020; 99:4351-4359. [PMID: 32867979 PMCID: PMC7318956 DOI: 10.1016/j.psj.2020.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
The vaccines currently available to control infectious bursal disease (IBD) include live-attenuated and inactivated vaccines, immune-complex vaccines, and vaccines consisting of viral constructs of herpesvirus of turkeys genetically engineered to express VP2 surface protein. To evaluate the impact of vaccines on the chicken immune system, 2 animal trials were performed in specific pathogen-free broiler chickens. In trial 1, birds were either vaccinated when they are one-day old with a dual recombinant herpes virus of turkey construct vaccine, expressing VP2 protein of (IBDV) and F protein of Newcastle disease virus, or an immune-complex IBDV vaccine or birds were not vaccinated. At 14, 28, and 35 D, the bursa of Fabricius was collected for bursa:body weight (B:BW) ratio calculation. In trial 2, birds were vaccinated when they were 1-day old according to the same protocol as trial 1, but at day 14, all groups also received a live infectious bronchitis (IB) vaccine. At 0, 7, 14, 21, and 28 days after IB vaccination, birds were tested by ELISA for IB serology and, soon after the last blood sampling, they were euthanized for collection of Harderian glands, trachea, and spleen and testing by flow cytometry for characterization of mononuclear cells. The immune-complex vaccine groups showed significantly lower B:BW ratio, lower IBV antibody titers, and higher mean percentage of CD8+ T cells in the spleen, trachea, and Harderian glands than those in the other experimental groups. The results of the in vivo trials coupled with a depth analysis of the repertoire of parameters involved in the immune response to IBD and IB vaccinations show one vaccine may influence the immune response of other vaccines included in the vaccination program.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Elisa Russo
- MSD Animal Health Srl, 20090 Segrate, MI, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
7
|
Laconi A, Berends AJ, de Laat ECH, Urselmann TAPMP, Verheije HM. Infectious bronchitis virus Mass-type (GI-1) and QX-like (GI-19) genotyping and vaccine differentiation using SYBR green RT-qPCR paired with melting curve analysis. J Virol Methods 2019; 275:113771. [PMID: 31712091 PMCID: PMC7113787 DOI: 10.1016/j.jviromet.2019.113771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023]
Abstract
Infectious Bronchitis Virus (IBV) is a highly contagious virus of chicken, causing huge economic losses in the poultry industry. Many genotypes circulate in a given area, and optimal protection relies on vaccination with live attenuated vaccines of the same genotype. As these live vaccines are derived from field viruses and circulate, understanding the prevalence of different IBV genotypes in any area is complex. In a recent study, the genome comparison of an IBV QX vaccine and its progenitor field strain led to the identification of vaccine markers. Here we developed a simplex SYBRgreen RT-qPCR assay for differentiation between QX-like field and vaccine strains and a multiplex SYBRgreen RT-qPCR assay for IBV genotyping with melting curve analysis, as each virus produced distinct and reliable melting peaks. Both the simplex and the multiplex assays showed excellent efficiency, sensitivity and specificity representing a low cost diagnostic tool for IBV genotyping and vaccine differentiation.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Alinda J Berends
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Esther C H de Laat
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tara A P M P Urselmann
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hélène M Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Laconi A, Catelli E, Cecchinato M, Naylor CJ. Two similar commercial live attenuated AMPV vaccines prepared by random passage of the identical field isolate, have unrelated sequences. Vaccine 2019; 37:2765-2767. [PMID: 31003913 DOI: 10.1016/j.vaccine.2019.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
Abstract
Since late '80 s Avian metapneumovirus subtype A causes sufficient disease in Europe for commercial companies to have started developing live attenuated vaccines. Here, two of those vaccines were fully consensus sequenced alongside their progenitor field strain (#8544). Sequences comparison shows that the attenuation of field strain #8544 was associated with no common substitutions between the two derived vaccines. This finding suggests that the attenuation of field viruses via serial passage on cell cultures or tissues is the result of a random process, rather than a mechanism aiming to achieve a specific sequence. Furthermore, field vaccination strategies would greatly benefit by the unambiguous vaccine markers identified in this study, enabling a prompt and confident vaccines detection.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom.
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Clive J Naylor
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| |
Collapse
|
9
|
Laconi A, Listorti V, Franzo G, Cecchinato M, Naylor C, Lupini C, Catelli E. Molecular characterization of whole genome sequence of infectious bronchitis virus 624I genotype confirms the close relationship with Q1 genotype. Transbound Emerg Dis 2018; 66:207-216. [PMID: 30126059 PMCID: PMC7168539 DOI: 10.1111/tbed.13000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/16/2018] [Accepted: 08/12/2018] [Indexed: 11/28/2022]
Abstract
Infectious Bronchitis virus (IBV) genotype Q1 was detected for the first time in China in 1996, and then spread worldwide. The first report of Q1 genotype in Italy occurred in 2011 and a deep molecular investigation of a Q1 isolated in Italy in 2013 has led to speculation regarding the origin of this genotype. Phylogenetic analysis of the S1 sequence of a Q1 Italian strain revealed a close relationship with sequences of the 624I strains circulating in Italy in the early 1990s and this led to the idea that 624I was an ancestor of the Q1 genotype. Despite the fact that most heterogeneity of IBVs occurs in the S1 gene, the sequence analysis of this gene alone was not sufficient to confirm or deny this hypothesis. In the present study, an Italian 624I (gammaCoV/AvCov/Ck/Italy/IP14425/96) was fully sequenced for the first time and compared to all available complete Q1 genome sequences. This analysis confirmed the genetic correlation between GammaCoV/AvCov/Ck/Italy/IP14425/96 and Q1 strains, suggesting a common origin between 624I and Q1 genotypes.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Infection Biology, University of Liverpool, Leahurst Campus, Liverpool, Cheshire, UK
| | - Valeria Listorti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Clive Naylor
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Liverpool, Cheshire, UK
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
10
|
Xia J, He X, Du LJ, Liu YY, You GJ, Li SY, Liu P, Cao SJ, Han XF, Huang Y. Preparation and protective efficacy of a chicken embryo kidney cell-attenuation GI-19/QX-like avian infectious bronchitis virus vaccine. Vaccine 2018; 36:4087-4094. [PMID: 29859801 DOI: 10.1016/j.vaccine.2018.05.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 01/03/2023]
Abstract
Avian infectious bronchitis (IB) is a highly contagious disease, and hazardous to the poultry industry. Immune failure often occurs due to the emergence of new serotypes or field strains antigenically different from the vaccine strains. To prepare a candidate vaccine against the prevalent avian infectious bronchitis virus (IBV) in China, the GI-19/QX-like field isolate Sczy3 was selected as the progenitor strain and attenuated via passaging in chicken embryo kidney (CEK) cells for 100 times. The 100th generation of CEK-adapted strain, designated SczyC100, was safe to use on one-day old specific pathogen-free (SPF) chicken as determined by pathogenicity and virulence reversion test. The efficacies of SczyC100 and two commonly used commercial vaccines (H120 and 4/91) against prevalent GI-19/QX and GI-7/TWI type virulent strains were evaluated. Sczy3C100 effectively reduced the morbidity, mortality, mean lesion scores (MLSs), and viral load of trachea of chickens challenged by GI-19/QX and GI-7/TWI strains. CEK-adapted SczyC100 is therefore a potential vaccine candidate for the control of IB in China.
Collapse
Affiliation(s)
- Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xiao He
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Li-Jing Du
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Yue-Yue Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Guo-Jin You
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Shu-Yun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Ping Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Xin-Feng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|